搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加电场和B/N掺杂对锡烯带隙的影响

吕永杰 陈燕 叶方成 蔡李彬 戴子杰 任云鹏

引用本文:
Citation:

外加电场和B/N掺杂对锡烯带隙的影响

吕永杰, 陈燕, 叶方成, 蔡李彬, 戴子杰, 任云鹏

Influcence of external electric field and B/N doping on the band gap of stanene

Lü Yong-Jie, Chen Yan, Ye Fang-Cheng, Cai Li-Bin, Dai Zi-Jie, Ren Yun-Peng
PDF
HTML
导出引用
  • 锡烯具有超高载流子密度、无质量狄拉克费米子和高导热性等优良性质, 并且存在能带反转现象, 被认为是拓扑绝缘体, 拓扑绝缘体在一定条件下可以获得无耗散电流, 具有极高的应用潜力. 由于锡烯在布里渊区高对称点K处的能带存在狄拉克锥, 带隙为零, 大大限制了锡烯在半导体领域的应用. 本文采用在锡烯中掺杂B/N元素和在垂直于锡烯平面方向施加电场的方法来打开锡烯在K点处的带隙, 并研究掺杂和施加电场强度对锡烯结构和电子性质的变化. 研究发现施加掺杂B元素和垂直电场都能在保留锡烯拓扑性质的同时打开K点处的带隙, 并且施加的垂直电场强度与K点处带隙呈正相关. 在掺杂B元素的同时施加垂直电场可以增大K点处的带隙, 当电场强度为0.5 V/Å时, 带隙达到0.092 eV. 掺杂N元素后, 锡烯变为间接带隙半导体, 带隙为0.183 eV. 施加垂直电场不能改变N元素掺杂锡烯的结构, 施加的垂直电场强度与K点处带隙则呈负相关, 当电场强度为0.5 V/Å时, K点处带隙减小到0.153 eV.
    Stanene possesses excellent properties, including an extremely high charge carrier density, massless Dirac fermions, and high thermal conductivity. Moreover, it exhibits band inversion phenomena, being made a candidate for a topological insulator. Topological insulators can generate dissipationless electric currents under certain conditions, showing great application potentials. However, the presence of a Dirac cone in the band structure of stanene at the high-symmetry point K in the Brillouin zone, resulting in a zero band gap, significantly limits its applications in the semiconductor field. This study adopts the method of doping B/N elements in stanene and applying an electric field perpendicular to the stanene to open the band gap at the K point. The effects of doping and the intensity of the applied electric field on the structural and electronic properties of stanene are investigated. The results reveal that both doping B elements and applying a vertical electric field can open the band gap at the K point while preserving the topological properties of stanene. Additionally, there is a positive correlation between the applied vertical electric field intensity and the band gap at the K point. Simultaneously doping B elements and applying a vertical electric field can increase the band gap at the K point, reaching 0.092 eV when the electric field intensity is 0.5 V/Å. After doping N elements, stanene is transformed into an indirect band gap semiconductor with a band gap of 0.183 eV. Applying a vertical electric field cannot change the structure of N-doped stanene, and the intensity of the applied vertical electric field is negatively correlated with the band gap at the K point. When the electric field intensity is 0.5 V/Å, the band gap at the K point decreases to 0.153 eV.
      通信作者: 任云鹏, renyp@ujs.edu.cn
    • 基金项目: 江苏省自然科学基金 (批准号: BK20220519)和江苏省高校自然科学研究项目(批准号: 22KJB140002)资助的课题.
      Corresponding author: Ren Yun-Peng, renyp@ujs.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220519) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJB140002).
    [1]

    Luo B, Wang B, Li X L, Jia Y Y, Liang M H, Zhi L J 2012 Adv. Mater. 24 3538Google Scholar

    [2]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [3]

    Roome N J, Carey J D 2014 ACS Appl. Mater. Interfaces 6 7743Google Scholar

    [4]

    Liu C C, Jiang H, Yao Y G 2011 Phys. Rev. B 84 195430Google Scholar

    [5]

    Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [6]

    Zhu F F, Chen W J, Xu Y, Gao C L 2015 Nat. Mater. 14 1020Google Scholar

    [7]

    Gao J, Zhang G, Zhang Y W 2016 Sci. Rep. 6 29107Google Scholar

    [8]

    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A, Le Lay G 2018 2D Mater. 5 025002Google Scholar

    [9]

    Deng J J, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [10]

    郑晓虎, 张建峰, 杜瑞瑞 2022 物理学报 71 186401Google Scholar

    Zheng X H, Zhang J F, Du R R 2022 Acta Phys. Sin. 71 186401Google Scholar

    [11]

    钱冬, 贾金锋 2016 科学通报 61 3252

    Qian D, Jia J F 2016 Chin. Sci. Bul. 61 3252

    [12]

    Wu S C, Shan G, Yan B H 2014 Phys. Rev. Lett. 113 256401Google Scholar

    [13]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [14]

    Ren C C, Ji W X, Zhang C W, Li P, Wang P J 2016 Mater. Res. Express 3 105008Google Scholar

    [15]

    Garg P, Choudhuri I, Mahata A, Pathak B 2017 Phys. Chem. Chem. Phys. 19 3660Google Scholar

    [16]

    Pribram Jones A, Pittalis S, Gross E, Burke K Frontiers and Challenges in Warm Dense Matter (Cham, Switzerland: Springer) pp25–60

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [19]

    Hamann D R 2013 Phys. Rev. B 88 085117Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    Liu D C, Nocedal J 1989 Math. Program 45 503Google Scholar

    [22]

    Hänggi P, Thomas H 1982 Phy. Rep. 88 207Google Scholar

    [23]

    Xing D X, Ren C C, Zhang S F, Feng Y, Chen X L, Zhang C W, Wang P J 2017 Superlattices Microstruct. 103 139Google Scholar

    [24]

    Dai X Q, Zhao M Y, Zhao R M, Li W 2017 Superlattices Microstruct. 106 33Google Scholar

    [25]

    Zhao C X, Jia J F 2020 Front. Phys. 15 53201Google Scholar

    [26]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [27]

    Nika D, Pokatilov E, Askerov A, Balandin A A 2009 Phys. Rev. B 79 155413Google Scholar

    [28]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [29]

    Van den Broek B, Houssa M, Scalise E, Pourtois G, Afanas'ev V V, Stesmans A 2014 2D Mater. 1 021004Google Scholar

    [30]

    Zhou J, Huang J, Sumpter B G, Kent P R C, Xie Y, Terrones H, Smith S C 2014 J. Phys. Chem. C 118 16236Google Scholar

    [31]

    Zhang Z, Liu X, Yakobson B I, Guo W 2012 J. Am. Chem. Soc. 134 19326Google Scholar

  • 图 1  锡烯优化后的结构图, 上方是锡烯结构主视图, 下方是锡烯结构的侧视图, 其中θ为锡烯键角, ab为锡烯晶格常数, l为Sn—Sn键长, E为外加电场, d为锡烯的屈曲

    Fig. 1.  Optimized structure of stanene and doped stanene. The top part is the top view of the structure of stanene, the bottom part is side view of the structure of stanene, where θ represents the bond angle of stanene, a and b represent the lattice constants of stanene, l represents the Sn—Sn bond length, E represents electric field, d represents the buckling of stanene.

    图 2  (a) 锡烯的能带图, 费米能级设在0 eV处; (b) 无应力锡烯的声子谱, 从下到上依次为ZA, TA, LA, ZO, TO和 LO

    Fig. 2.  (a) Band structure of stanene, the Fermi level is set to zero; (b) phonon spectrum of stress-free stanene, which are ZA (acoustic out-of-plane mode), TA (acoustic in-plane transverse mode), LA (acoustic in-plane longitudinal mode), ZO (optical out-of-plane mode), TO (optical in-plane transverse mode), LO (optical in-plane longitudinal mode), respectively from bottom to top.

    图 3  (a) 电场强度为0—0.5 V/Å时锡烯晶格常数、Sn—Sn键长和屈曲的变化; (b) 电场强度为0.5 V/Å时锡烯的能带图; (c) 电场强度为0—0.5 V/Å时锡烯在K点处的带隙, 费米能级设在0 eV处

    Fig. 3.  (a) The change of lattice constant, Sn—Sn bond length, and buckling of stanene under the electric field ranging from 0 to 0.5 V/Å; (b) the band gap of stanene under the electric field of 0.5 V/Å; (c) the band gap at the K point of stanene under the electric field ranging from 0 to 0.5 V/Å. The Fermi level is set to zero.

    图 4  (a) B掺杂锡烯优化后的结构图, 上方是B掺杂锡烯结构主视图, 下方是B掺杂锡烯结构的侧视图; (b) B掺杂锡烯的差分电荷密度图; (c) B掺杂锡烯的能带图; (d) B掺杂锡烯的声子色散图

    Fig. 4.  (a) Optimized structure of B-doped stanene, the top part is the top view of the structure of B-doped stanene, the bottom part is side view of the structure of B-doped stanene; (b) electron density difference of B-doped stanene; (c) energy band of B-doped stanene; (d) phonon spectrum of stress-free B-doped stanene.

    图 5  (a) N掺杂锡烯优化后的结构图, 上方是N掺杂锡烯结构主视图, 下方是N掺杂锡烯结构的侧视图; (b) N掺杂锡烯的差分电荷密度图; (c) N掺杂锡烯的能带图; (d) N掺杂锡烯的声子色散图

    Fig. 5.  (a) Optimized structure of N-doped stanene, the top part is the top view of the structure of N-doped stanene, the bottom part is side view of the structure of N-doped stanene; (b) electron density difference of N-doped stanene; (c) energy band of N-doped stanene; (d) phonon spectrum of stress-free N-doped stanene.

    图 6  (a)电场强度为0.5 V/Å时B掺杂锡烯的能带图; (b) 电场强度为0.5 V/Å时N掺杂锡烯的能带图, 费米能级设在0 eV处

    Fig. 6.  (a) The band gap of B-doped stanene under the electric field of 0.5 V/Å; (b) the band gap of N-doped stanene under the electric field of 0.5 V/Å, the Fermi level is set to zero.

  • [1]

    Luo B, Wang B, Li X L, Jia Y Y, Liang M H, Zhi L J 2012 Adv. Mater. 24 3538Google Scholar

    [2]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [3]

    Roome N J, Carey J D 2014 ACS Appl. Mater. Interfaces 6 7743Google Scholar

    [4]

    Liu C C, Jiang H, Yao Y G 2011 Phys. Rev. B 84 195430Google Scholar

    [5]

    Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [6]

    Zhu F F, Chen W J, Xu Y, Gao C L 2015 Nat. Mater. 14 1020Google Scholar

    [7]

    Gao J, Zhang G, Zhang Y W 2016 Sci. Rep. 6 29107Google Scholar

    [8]

    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A, Le Lay G 2018 2D Mater. 5 025002Google Scholar

    [9]

    Deng J J, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [10]

    郑晓虎, 张建峰, 杜瑞瑞 2022 物理学报 71 186401Google Scholar

    Zheng X H, Zhang J F, Du R R 2022 Acta Phys. Sin. 71 186401Google Scholar

    [11]

    钱冬, 贾金锋 2016 科学通报 61 3252

    Qian D, Jia J F 2016 Chin. Sci. Bul. 61 3252

    [12]

    Wu S C, Shan G, Yan B H 2014 Phys. Rev. Lett. 113 256401Google Scholar

    [13]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [14]

    Ren C C, Ji W X, Zhang C W, Li P, Wang P J 2016 Mater. Res. Express 3 105008Google Scholar

    [15]

    Garg P, Choudhuri I, Mahata A, Pathak B 2017 Phys. Chem. Chem. Phys. 19 3660Google Scholar

    [16]

    Pribram Jones A, Pittalis S, Gross E, Burke K Frontiers and Challenges in Warm Dense Matter (Cham, Switzerland: Springer) pp25–60

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [19]

    Hamann D R 2013 Phys. Rev. B 88 085117Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    Liu D C, Nocedal J 1989 Math. Program 45 503Google Scholar

    [22]

    Hänggi P, Thomas H 1982 Phy. Rep. 88 207Google Scholar

    [23]

    Xing D X, Ren C C, Zhang S F, Feng Y, Chen X L, Zhang C W, Wang P J 2017 Superlattices Microstruct. 103 139Google Scholar

    [24]

    Dai X Q, Zhao M Y, Zhao R M, Li W 2017 Superlattices Microstruct. 106 33Google Scholar

    [25]

    Zhao C X, Jia J F 2020 Front. Phys. 15 53201Google Scholar

    [26]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [27]

    Nika D, Pokatilov E, Askerov A, Balandin A A 2009 Phys. Rev. B 79 155413Google Scholar

    [28]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [29]

    Van den Broek B, Houssa M, Scalise E, Pourtois G, Afanas'ev V V, Stesmans A 2014 2D Mater. 1 021004Google Scholar

    [30]

    Zhou J, Huang J, Sumpter B G, Kent P R C, Xie Y, Terrones H, Smith S C 2014 J. Phys. Chem. C 118 16236Google Scholar

    [31]

    Zhang Z, Liu X, Yakobson B I, Guo W 2012 J. Am. Chem. Soc. 134 19326Google Scholar

  • [1] 卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓. 碳和氧掺杂紫磷烯作为双极磁性半导体材料的理论预测. 物理学报, 2024, 73(1): 016301. doi: 10.7498/aps.73.20231279
    [2] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [3] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] 郑晓虎, 张建峰, 杜瑞瑞. InSb(111)衬底上外延生长二维拓扑绝缘体锡烯/铋烯的差异性研究. 物理学报, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [5] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [6] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [7] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [8] 相阳, 郑军, 李春雷, 王小明, 袁瑞旸. 圆偏振光场调控的锡烯纳米带热自旋输运. 物理学报, 2021, 70(14): 147301. doi: 10.7498/aps.70.20210197
    [9] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [10] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [12] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [13] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [15] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [16] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [17] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [19] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [20] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究. 物理学报, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
计量
  • 文章访问数:  1657
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-01-08
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回