搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆偏振光场调控的锡烯纳米带热自旋输运

相阳 郑军 李春雷 王小明 袁瑞旸

引用本文:
Citation:

圆偏振光场调控的锡烯纳米带热自旋输运

相阳, 郑军, 李春雷, 王小明, 袁瑞旸

Circularly-polarized light controlled thermal spin transport in stanene nanoribbon

Xiang Yang, Zheng Jun, Li Chun-Lei, Wang Xiao-Ming, Yuan Rui-Yang
PDF
HTML
导出引用
  • 利用非平衡格林函数方法理论研究了光场和电场对锡烯纳米带自旋相关热电效应的影响. 研究表明, 热电电流的性质和强度可以通过圆偏振光场的强度和偏振化方向进行有效调控. 在较强的左旋圆偏振光场和电场的共同作用下, 锡烯自旋向下的边缘态发生相变形成带隙, 通过温度梯度的驱动可以获得100%极化的自旋向下的自旋流. 当施加右旋偏振光时, 自旋向上的边缘态被破坏, 可以产生完全极化的自旋向上的热自旋流. 在较弱的外场作用下, 边缘态的性质不发生改变, 系统不对外输出热电电流. 此外, 研究表明热自旋流的大小与带隙的宽度有关, 适度地增加温度可以显著增大热自旋流的峰值, 但是较高的平衡温度和温度梯度将抑制自旋热电效应.
    The major challenge of spintronics lies in how to generate, manipulate, and detect spin current. Multiple methods, such as using magnetic materials, magnetic field, and polarized light field to manipulate the spin of electrons, have been proposed. Owing to the possible applications in spintronic devices, there is currently great interest in the field of spin caloritronics, which focuses on the interplay of spin and heat currents. Stanene is a type of two-dimensional topological insulator consisting of a single layer of Sn atoms arranged in a hexagonal lattice. In this paper, the effects of light and electric fields on the spin-dependent thermoelectric effect of the stanene nanoribbon are studied theoretically based on the non-equilibrium Green’s function method. The results show that the properties and intensity of the thermoelectric current can be effectively controlled by the intensity and the polarization direction of the circularly polarized light field. Under the joint action of a strong circularly-polarized light field and an electric field, the stanene can transform from a quantum spin-Hall insulator into a spin-polarized quantum Hall insulator. When the left-circularly-polarized light field is applied, the spin-down edge states of stanene undergo a phase transition to form a bandgap, and a 100% spin-polarized spin-down current driven by temperature gradient can be obtained. When the right-circularly-polarized light is applied, the edge states of spin-up electrons are destroyed, and a completely polarized spin-up thermal current can be generated. In the weak external field, the properties of the edge state do not change, and the system does not output a thermoelectric current. In addition, the study shows that the intensity of the thermal spin current is related to the width of the bandgap, and a moderate increase in temperature can significantly increase the peak value of the current, but the higher equilibrium temperature and temperature gradient will restrain the spin thermoelectric effect.
      通信作者: 郑军, zhengjun@bhu.edu.cn ; 李春雷, licl@cnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604021)、辽宁省“兴辽英才”青年拔尖人才项目(批准号: XLYC20)、辽宁省自然科学基金计划指导项目(批准号: 2019-ZD-0501)、辽宁省教育厅青年科技人才“育苗”项目(批准号: LQ2019015)、北京市教育委员会科技计划面上项目(批准号: KM201810028022)和低维量子物理国家重点实验室开放课题(批准号: KF201910)资助的课题
      Corresponding author: Zheng Jun, zhengjun@bhu.edu.cn ; Li Chun-Lei, licl@cnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604021), the Liaoning Revitalization Talents Program, China (Grant No. XLYC20), the Guiding Project of Natural Science Foundation of Liaoning Province, China (Grant No. 2019-ZD-0501), the Science and Technology Research Foundation of Education Commission of Liaoning Province, China (Grant No. LQ2019015), the Science Technology Foundation from Education Commission of Beijing, China (Grant No. KM201810028022), and the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201910)
    [1]

    Takeda K, Shiraishi K 1994 Phys. Rev. B 50 1491Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 155453Google Scholar

    [4]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [5]

    Xu Y, Gan Z X, Zhang S C 2014 Phys. Rev. Lett. 112 226801Google Scholar

    [6]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [7]

    Gou J, Kong L J, Li H, Zhong Q, Li W B, Cheng P, Chen L, Wu K H 2017 Phys. Rev. Mater. 1 054004Google Scholar

    [8]

    Zang Y Y, Jiang T, Gong Y, Guan Z Y, Liu C, Liao M H, Zhu K J, Li Z, Wang L L, Li W, Song C L, Zhang D, Xu Y, He K, Ma X X, Zhang S C, Xue Q K 2018 Adv. Funct. Mater. 28 1802723Google Scholar

    [9]

    Xu C Z, Chan Y H, Chen P, Wang X X, Flototto D, Hlevyack J A, Bian G, Mo S K, Chou M Y, Chiang T C 2018 Phys. Rev. B 97 035122Google Scholar

    [10]

    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A 2018 2D Mater. 5 025002

    [11]

    Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [12]

    Slachter A, Bakker F L, Adam J P, Van Wees B J 2010 Nat. Phys. 6 879Google Scholar

    [13]

    陈晓彬, 段文晖 2015 物理学报 64 186302Google Scholar

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar

    [14]

    郑军, 李春雷, 杨曦, 郭永 2017 物理学报 66 097302Google Scholar

    Zheng J, Li C L, Yang X, Guo Y 2017 Acta Phys. Sin. 66 097302Google Scholar

    [15]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [16]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597Google Scholar

    [17]

    Harman T, Taylor P, Walsh M, LaForge B 2002 Science 297 2229Google Scholar

    [18]

    Zheng J, Chi F, Guo Y 2012 J. Phys. Condens. Matter 24 265301Google Scholar

    [19]

    Shi L B, Yang M, Cao S, You Q, Zhang Y J, Qi M, Zhang K C, Qian P 2020 J. Mater. Chem. C 8 5882

    [20]

    Cao S, Chen H B, Su Ye, Shi L B, Qian P 2021 Appl. Surf. Sci. 546 149075Google Scholar

    [21]

    Zberecki K, Wierzbicki M, Barnas J, Swirkowicz R 2013 Phys. Rev. B 88 115404Google Scholar

    [22]

    Niu Z P, Dong S H 2014 Appl. Phys. Lett. 104 202401Google Scholar

    [23]

    Zberecki K, Wierzbicki M, Barnas J 2014 Phys. Rev. B 89 165419Google Scholar

    [24]

    Zheng J, Chi F, Guo Y 2014 J. Phys. Condens. Matter 27 295302

    [25]

    Zheng J, Chi F, Guo Y 2015 J. Appl. Phys. 118 195101Google Scholar

    [26]

    Wierzbicki M, Barnas J, Swirkowicz R 2015 Phys. Rev. B 91 165417Google Scholar

    [27]

    Fu H H, Wu D D, Wu M H, Wu R Q 2015 Phys. Rev. B 92 045418Google Scholar

    [28]

    Fu H H, Wu D D, Zhang Z Q, Gu L 2015 Sci. Rep. 5 10547Google Scholar

    [29]

    Krompiewski S, Cuniberti G 2017 Phys. Rev. B 96 155447Google Scholar

    [30]

    Zheng J, Chi F, Guo Y 2018 Phys. Rev. Appl. 9 024012Google Scholar

    [31]

    Zhai X C, Wang Y T, Wen R, Wang S X, Tian Y, Zhou X F, Chen W, Yang Z H 2018 Phys. Rev. B 97 085410Google Scholar

    [32]

    Zhai X C, Gu J W, Wen R, Liu R W, Zhu M, Zhou X F, Gong L Y, Li X A 2019 Phys. Rev. B 99 085421Google Scholar

    [33]

    Sengupta P, Rakheja S 2020 Physica E 118 113862Google Scholar

    [34]

    Kane C L, Mele E J 2015 Phys. Rev. Lett. 95 146802

    [35]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430Google Scholar

    [36]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [37]

    Zheng J, Chi F, Guo Y 2018 Appl. Phys. Lett. 113 112404Google Scholar

    [38]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [39]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [40]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [41]

    Zheng J, Xiang Y, Li C L, Yuan R Y, Chi F, Guo Y 2020 Phys. Rev. Appl. 14 034027Google Scholar

    [42]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [43]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4988Google Scholar

    [44]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4997Google Scholar

  • 图 1  (a) 施加温度差的锡烯纳米带俯视图. 红色和蓝色区域表示高温和低温热极, 热极的温度分别为$T_{\rm L} = T+ $$ \Delta T/2$$ T_{\rm R} = T-\Delta T/2 $, 灰色区域表示圆偏振光场辐照的区域. (b) 施加圆偏振光场和电场的锡烯纳米带俯视图, 中间灰色区域的背电极为锡烯提供Z轴方向的电场

    Fig. 1.  (a) Top view of a stanene nanoribbon with temperature difference. The red and blue regions represent the high-temperature and low-temperature leads. The temperatures of the thermal leads are $ T_{\rm L} = T+\Delta T/2 $ and $ T_{\rm R} = T-\Delta T/2 $, respectively. The gray central region represents the area irradiated by the circularly polarized light field. (b) Top view of the stanene nanoribbon with circularly polarized light and electric fields, the back gate in the gray area provides the electric field in the Z-axis direction.

    图 2  (a) 电场交错势能$ \lambda_E $和偏振光场强度参数$ \lambda_\varOmega $分别取$ \lambda_E = \lambda_\varOmega = 0 $, 0.02, 0.04, 0.06, 0.08, 0.10 eV时, 自旋相关的电流$ I_\sigma $ 随左(右)热极费米能级$ E_{\rm F} $的变化; (b) $ \lambda_E = \lambda_\varOmega = 0.04 $ eV和(c) $ \lambda_E = \lambda_\varOmega = 0.08 $ eV时的电子能带结构, 其中红色虚线代表自旋向上电子形成的能带, 蓝色实线对应自旋向下的能带

    Fig. 2.  (a) Spin dependent current $ I_\sigma $ as a function of the Fermi energy $ E_{\rm F} $ with different values of electric-field-induced staggered potential and light parameter $ \lambda_E = \lambda_\varOmega = 0 $, 0.02, 0.04, 0.06, 0.08, and 0.10 eV. Energy-band diagrams of stanene with different values of $ \lambda_E $ and $ \lambda_\varOmega $: (b) $ \lambda_E = \lambda_\varOmega = 0.04 $ eV; (c) $ \lambda_E = \lambda_\varOmega = 0.08 $ eV. The red dash and blue solid lines represent spin-up and spin-down energy states, respectively.

    图 3  (a) 电场交错势能$ \lambda_E = 0.1 $ eV, 圆偏振光场参数分别取$ \lambda_\varOmega = -0.025 $, –0.050, –0.075, –0.100 eV时自旋相关电流$ I_\sigma $随电极费米能级$ E_{\rm F} $的变化关系; (b)$ \lambda_E = 0.1 $ eV且$\lambda_\varOmega = -0.050$ eV时锡烯的电子能带结构, 其中红色虚线代表自旋向上电子形成的能带, 蓝色实线对应自旋向下的能带

    Fig. 3.  (a) Spin dependent current $ I_\sigma $ as a function of the Fermi energy $ E_{\rm F} $ with $ \lambda_E = 0.1 $ eV and $ \lambda_\varOmega = -0.025 $, –0.050, –0.075, –0.100 eV; (b) energy-band diagram of stanene with $ \lambda_E = 0.1 $ eV and $\lambda_\varOmega = -0.050$ eV. The red dash and blue solid lines represent spin-up and spin-down energy states, respectively.

    图 4  (a) 热极费米能级$ E_{\rm F} = 0.05 $ eV时, 总的热电电流$ I_{\rm e} $随着圆偏振光场参数$ \lambda_\varOmega $和电场交错势能$ \lambda_E $的变化; (b) 系统温度$ T = 100 $ K、温度梯度$ \Delta T $取不同值时热自旋相关电流$ I_\sigma $随着热极费米能级$ E_{\rm F} $的变化; (c) 温度梯度$ \Delta T = 50 $ K、系统温度$ T = 200 $, 300, 400 K时总的热电电流$ I_{\rm e} $随着热极费米能级的变化. 图(b)和图(c)中光场强度参数和电场交错势能分别为$ \lambda_\varOmega = -0.05 $ eV和$ \lambda_E = 0.1 $ eV

    Fig. 4.  (a) Total thermoelectric current $ I_{\rm e} $ as a function of electric-field-induced staggered potential $ \lambda_E $ and light parameter $ \lambda_\varOmega $ with the Fermi energy of thermal electrode $ E_{\rm F} = 0.05 $ eV; (b) spin dependent current $ I_\sigma $ versus Fermi energy $ E_{\rm F} $ with system equilibrium temperature $ T = 100 $ K and various temperature gradient $ \Delta T $; (c) total thermoelectric current $ I_{\rm e} $ as a function of Fermi energy $ E_{\rm F} $ with system equilibrium temperature $T = 200$, 300, and 400 K and $ \Delta T = 50 $ K. The electric-field-induced staggered potential and light parameter in panel (b) and panel (c) are $ \lambda_\varOmega = -0.05 $ eV and $ \lambda_E = 0.1 $ eV, respectively.

  • [1]

    Takeda K, Shiraishi K 1994 Phys. Rev. B 50 1491Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 155453Google Scholar

    [4]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [5]

    Xu Y, Gan Z X, Zhang S C 2014 Phys. Rev. Lett. 112 226801Google Scholar

    [6]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [7]

    Gou J, Kong L J, Li H, Zhong Q, Li W B, Cheng P, Chen L, Wu K H 2017 Phys. Rev. Mater. 1 054004Google Scholar

    [8]

    Zang Y Y, Jiang T, Gong Y, Guan Z Y, Liu C, Liao M H, Zhu K J, Li Z, Wang L L, Li W, Song C L, Zhang D, Xu Y, He K, Ma X X, Zhang S C, Xue Q K 2018 Adv. Funct. Mater. 28 1802723Google Scholar

    [9]

    Xu C Z, Chan Y H, Chen P, Wang X X, Flototto D, Hlevyack J A, Bian G, Mo S K, Chou M Y, Chiang T C 2018 Phys. Rev. B 97 035122Google Scholar

    [10]

    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A 2018 2D Mater. 5 025002

    [11]

    Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [12]

    Slachter A, Bakker F L, Adam J P, Van Wees B J 2010 Nat. Phys. 6 879Google Scholar

    [13]

    陈晓彬, 段文晖 2015 物理学报 64 186302Google Scholar

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar

    [14]

    郑军, 李春雷, 杨曦, 郭永 2017 物理学报 66 097302Google Scholar

    Zheng J, Li C L, Yang X, Guo Y 2017 Acta Phys. Sin. 66 097302Google Scholar

    [15]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [16]

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597Google Scholar

    [17]

    Harman T, Taylor P, Walsh M, LaForge B 2002 Science 297 2229Google Scholar

    [18]

    Zheng J, Chi F, Guo Y 2012 J. Phys. Condens. Matter 24 265301Google Scholar

    [19]

    Shi L B, Yang M, Cao S, You Q, Zhang Y J, Qi M, Zhang K C, Qian P 2020 J. Mater. Chem. C 8 5882

    [20]

    Cao S, Chen H B, Su Ye, Shi L B, Qian P 2021 Appl. Surf. Sci. 546 149075Google Scholar

    [21]

    Zberecki K, Wierzbicki M, Barnas J, Swirkowicz R 2013 Phys. Rev. B 88 115404Google Scholar

    [22]

    Niu Z P, Dong S H 2014 Appl. Phys. Lett. 104 202401Google Scholar

    [23]

    Zberecki K, Wierzbicki M, Barnas J 2014 Phys. Rev. B 89 165419Google Scholar

    [24]

    Zheng J, Chi F, Guo Y 2014 J. Phys. Condens. Matter 27 295302

    [25]

    Zheng J, Chi F, Guo Y 2015 J. Appl. Phys. 118 195101Google Scholar

    [26]

    Wierzbicki M, Barnas J, Swirkowicz R 2015 Phys. Rev. B 91 165417Google Scholar

    [27]

    Fu H H, Wu D D, Wu M H, Wu R Q 2015 Phys. Rev. B 92 045418Google Scholar

    [28]

    Fu H H, Wu D D, Zhang Z Q, Gu L 2015 Sci. Rep. 5 10547Google Scholar

    [29]

    Krompiewski S, Cuniberti G 2017 Phys. Rev. B 96 155447Google Scholar

    [30]

    Zheng J, Chi F, Guo Y 2018 Phys. Rev. Appl. 9 024012Google Scholar

    [31]

    Zhai X C, Wang Y T, Wen R, Wang S X, Tian Y, Zhou X F, Chen W, Yang Z H 2018 Phys. Rev. B 97 085410Google Scholar

    [32]

    Zhai X C, Gu J W, Wen R, Liu R W, Zhu M, Zhou X F, Gong L Y, Li X A 2019 Phys. Rev. B 99 085421Google Scholar

    [33]

    Sengupta P, Rakheja S 2020 Physica E 118 113862Google Scholar

    [34]

    Kane C L, Mele E J 2015 Phys. Rev. Lett. 95 146802

    [35]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430Google Scholar

    [36]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [37]

    Zheng J, Chi F, Guo Y 2018 Appl. Phys. Lett. 113 112404Google Scholar

    [38]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [39]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [40]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [41]

    Zheng J, Xiang Y, Li C L, Yuan R Y, Chi F, Guo Y 2020 Phys. Rev. Appl. 14 034027Google Scholar

    [42]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [43]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4988Google Scholar

    [44]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4997Google Scholar

  • [1] 吕永杰, 陈燕, 叶方成, 蔡李彬, 戴子杰, 任云鹏. 外加电场和B/N掺杂对锡烯带隙的影响. 物理学报, 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [2] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [3] 郑军, 马力, 李春雷, 袁瑞旸, 郭亚涛, 付旭日. 自旋偏压驱动的硅烯和锗烯光控晶体管. 物理学报, 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [4] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响. 物理学报, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [5] 郑晓虎, 张建峰, 杜瑞瑞. InSb(111)衬底上外延生长二维拓扑绝缘体锡烯/铋烯的差异性研究. 物理学报, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [6] 苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐. 圆偏振光伏效应. 物理学报, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [7] 加孜拉·哈赛恩, 朱恪嘉, 孙飞, 吴艳玲, 石友国, 赵继民. 三重简并拓扑半金属MoP中超快圆偏振光产生和调控光生热电流. 物理学报, 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [8] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射. 物理学报, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [9] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [10] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [11] 罗幸, 周新星, 罗海陆, 文双春. 光自旋霍尔效应中的交叉偏振特性研究. 物理学报, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [12] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] 张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华. 新型高效偏振光分束器的设计. 物理学报, 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [14] 刘森, 罗海陆, 文双春. 左手材料中圆偏振光束的反常旋转特性研究. 物理学报, 2011, 60(7): 074208. doi: 10.7498/aps.60.074208
    [15] 陈达鑫, 陈志峰, 徐初东, 赖天树. 铁磁薄膜中圆偏振光感应的瞬态磁光Kerr峰的物理起源. 物理学报, 2010, 59(10): 7362-7367. doi: 10.7498/aps.59.7362
    [16] 孙蓓, 陈抱雪, 隋国荣, 王关德, 邹林儿, 浜中广见, 矶守. 掺锡As2S8薄膜光折变效应及其在条波导制备中的应用研究. 物理学报, 2009, 58(5): 3238-3242. doi: 10.7498/aps.58.3238
    [17] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性. 物理学报, 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
    [18] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究. 物理学报, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [19] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究. 物理学报, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
    [20] 白贵儒, 吕洪君, 邢晓正. 衍射法测径中的光场偏振效应. 物理学报, 1988, 37(6): 899-905. doi: 10.7498/aps.37.899
计量
  • 文章访问数:  3514
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-02-16
  • 上网日期:  2021-07-07
  • 刊出日期:  2021-07-20

/

返回文章
返回