搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

III-V族硼基化合物半导体反常热导率机理

施亨宪 杨凯科 骆军委

引用本文:
Citation:

III-V族硼基化合物半导体反常热导率机理

施亨宪, 杨凯科, 骆军委

Origin of abnormal thermal conductivity in group III-V boron compound semiconductors

Shi Heng-Xian, Yang Kai-Ke, Luo Jun-Wei
PDF
HTML
导出引用
  • 采用基于玻尔兹曼输运方程的第一性原理计算方法深入研究了硼基III-V化合物的热导率性质, 与IV族和III-V族半导体进行对比, 发现砷化硼的高热导率主要来源于硼基III-V化合物中声学支和光学支之间存在一个很大的频率带隙, 导致两个声学声子的能量要小于一个光学声子的能量, 无法满足三声子散射的能量守恒要求, 严重遏制了三声子散射几率. 金刚石的高热导率主要来自其拥有极大的声学声子群速度. 磷化硼虽然也拥有较大的声学声子群速度, 但是其频率带隙比较小, 无法有效遏制三声子散射, 所以磷化硼的热导率小于砷化硼; 尽管锑化硼的频率带隙与砷化硼相当, 但是由于其拥有较小的声学声子群速度和较大的耦合矩阵元, 导致锑化硼的热导率低于砷化硼. 该研究为设计高热导率半导体材料提供了新的认识.
    Over the past half-century, according to Moore’s law, the sizes of transistors continue shrinking, and the integrated circuits have approached to their physical limits, which puts forward higher requirements for the thermal dissipation capacity of material. Revealing the physical mechanisms of heat conduction in semiconductors is important for thermal managements of devices. Experimentally, it was found that boron arsenide has a very high thermal conductivity compared with diamond, and boron arsenide has lattice constant close to silicon’s lattice constant, which can be heterogeneously integrated into silicon to solve the thermal management problem. However, group III-V boron compounds show abnormal thermal conductivities: the thermal conductivity of boron arsenide is significantly higher than that of boron phosphide and boron antimonide. Here, we use the first-principles calculation and the Boltzmann transport equation to study the thermal conductivity properties of the group III-V boron compounds. Comparison between the IV and III-V semiconductors shows that the high thermal conductivity of boron arsenide is due mainly to the existence of a large frequency gap between the acoustic and the optical branches. The energy sum of two acoustic phonons is less than energy of one optical phonon, which cannot meet the energy conservation requirements of three-phonon scattering, and then seriously restrict the probability of scattering of three phonons. The high thermal conductivity of diamond is due mainly to its great acoustic phonon group velocity. Although the boron phosphide also has a relatively large acoustic phonon group velocity, the frequency gap is relatively small, which cannot effectively suppress the three-phonon scattering, so the thermal conductivity of boron phosphide is less than that of boron arsenide. Although the frequency gap of boron antimonide is similar to that of boron arsenide, the thermal conductivity of boron antimonide is lower than that of boron arsenide due to its smaller acoustic phonon group velocity and larger coupling matrix element. The research provides a new insight into the design of semiconductor materials with high thermal conductivities.
      通信作者: 杨凯科, kkyang@hunnu.edu.cn ; 骆军委, jwluo@semi.ac.cn
    • 基金项目: 国家自然科学基金委重大仪器研制项目(批准号: 61927901)、国家杰出青年科学基金(批准号: 11925407)和国家自然科学基金(批准号: 11804333)资助的课题
      Corresponding author: Yang Kai-Ke, kkyang@hunnu.edu.cn ; Luo Jun-Wei, jwluo@semi.ac.cn
    • Funds: Project supported by the Major Instruments Research Program of National Natural Science Foundation of China (Grant No. 61927901), the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 11925407), and the National Natural Science Foundation of China (Grant No. 11804333)
    [1]

    王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东 2019 物理学报 68 090201Google Scholar

    Wang T, Chen H Y, Qiu P F, Shi X, Chen L D 2019 Acta Phys. Sin. 68 090201Google Scholar

    [2]

    张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [3]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [4]

    Wei L, Kuo P K, Thomas R L, Anthony T R, Banholzer W F 1993 Phys. Rev. Lett. 70 3764Google Scholar

    [5]

    Lindsay L, Broido D A 2008 J. Phys.: Condens. Matter 20 165209Google Scholar

    [6]

    Holland M G 1964 Phys. Rev. 134 A471Google Scholar

    [7]

    Feng T, Lindsay L, Ruan X 2017 Phys. Rev. B 96 161201Google Scholar

    [8]

    Lindsay L, Broido D A, Mingo N 2009 Phys. Rev. B 80 125407Google Scholar

    [9]

    Yang X, Feng T, Li J, Ruan X 2019 Phys. Rev. B 100 245203Google Scholar

    [10]

    Shiga T, Shiomi J, Ma J, Delaire O, Radzynski T, Lusakowski A, Esfarjani K, Chen G 2012 Phys. Rev. B 85 155203Google Scholar

    [11]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [12]

    Dames C 2018 Science 361 549Google Scholar

    [13]

    Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575Google Scholar

    [14]

    Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G, Lv B 2018 Science 361 579Google Scholar

    [15]

    Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Gamage G A G U, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G, Ren Z 2018 Science 361 582Google Scholar

    [16]

    Lindsay L, Broido D A, Reinecke T L 2013 Phys. Rev. Lett. 111 025901Google Scholar

    [17]

    Cao R, Deng H X, Luo J W, Wei S H 2019 J. Semicond. 40 042102Google Scholar

    [18]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [19]

    Maradudin A A, Fein A E 1962 Phys. Rev. 128 2589Google Scholar

    [20]

    Lax M, Hu P, Narayanamurti V 1981 Phys. Rev. B 23 3095Google Scholar

    [21]

    Ward A, Broido D A, Stewart D A, Deinzer G 2009 Phys. Rev. B 80 125203Google Scholar

    [22]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922Google Scholar

    [23]

    Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G 2012 Phys. Rev. B 85 184303Google Scholar

    [24]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

    [26]

    Mizokami K, Togo A, Tanaka I 2018 Phys. Rev. B 97 224306Google Scholar

    [27]

    Chaput L 2013 Phys. Rev. Lett. 110 265506Google Scholar

    [28]

    Wang L 2019 J. Semicond. 40 091101Google Scholar

    [29]

    Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B, Cahill D G 2018 Adv. Funct. Mater. 28 1805116Google Scholar

    [30]

    Kang J S, Wu H, Hu Y 2017 Nano Lett. 17 7507Google Scholar

    [31]

    Kumashiro Y, Mitsuhashi T, Okaya S, Muta F, Koshiro T, Takahashi Y, Mirabayashi M 1989 J. Appl. Phys. 65 2147Google Scholar

    [32]

    Berman R, Hudson P R W, Martinez M 1975 J. Phys. C: Solid State Phys. 8 430Google Scholar

    [33]

    Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R, Banholzer W F 1993 Phys. Rev. B 47 14850Google Scholar

    [34]

    基泰尔C著 (项金钟, 吴兴惠译) 2005 固体物理导论 (北京: 化学工业出版社) 第71−74页

    Kittel C (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp71−74 (in Chinese)

    [35]

    Pavone P, Karch K, Schutt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 48 3156Google Scholar

    [36]

    Fukumoto A 1990 Phys. Rev. B 42 7462Google Scholar

    [37]

    Harrison W A 2004 Elementary Electronic Structure (Revised Edition) (Singapore: World Scientific Publishing Co Pte Ltd) pp126−128

  • 图 1  (a)半导体材料热导率的第一性原理计算(实线), 不同颜色对应不同材料热导率值. 另外离散点来源于已有文献中实验测量的热导率数据, 其中墨绿色的圆圈[29]、正方形[30]和三角形[31]对应BP; 红色的圆圈[14]、正方形[15]和三角形[13]对应BAs; 黑色的圆圈[15]、正方形[32]和三角形[33]对应金刚石材料. (b) 各种不同半导体材料在单位体积下声子群速度的外积(${v_{\lambda} } \otimes {v_{\lambda} }{{/}}{V_0}$)随晶格振动频率的变化. (c)温度为100 K时各种半导体材料声子弛豫时间随晶格振动频率的变化

    Fig. 1.  (a) First-principles calculation of thermal conductivity of semiconductor materials (solid line), different colors correspond to different materials. In addition, the discrete points are derived from the thermal conductivity data measured experimentally in existing literature. The olive circles[29], squares[30] and triangles[31] correspond to BP. Red circles[14], squares[15] and triangles[13] correspond to BAs. Black circles[15], squares[32] and triangles[33] correspond to diamond. (b) Outer product of phonon group velocities per unit volume of various semiconductor materials as a function of frequency(${v_{\lambda} } \otimes {v_{\lambda} }{{/}}{V_0}$). (c) Phonon relaxation time of various semiconductor materials at 100 K as a function of frequency.

    图 2  (a)金刚石 (紫色)的晶格振动谱; (b) BAs (红色)和Si (墨绿色)的晶格振动谱; (c) BP (黑色)和BSb (蓝色)的晶格振动谱; (d) BP, BAs, BSb和Si的声子寿命或弛豫时间

    Fig. 2.  (a) Lattice vibration spectrum of diamond (violet); (b) lattice vibration spectrum of boron arsenide (red) and silicon (olive); (c) lattice vibration spectra of boron phosphide (black) and boron antimonide (blue); (d) phonon lifetime of boron phosphide, boron arsenide, boron antimony and silicon.

    图 3  BP, BAs和BSb的耦合矩阵元随晶格振动频率的变化

    Fig. 3.  Coupling matrix element of BP, BAs and BSb as a function of frequency.

    图 4  (a) BAs和GaAs的晶格振动谱; (b) BP, BAs, BSb, GaP, GaAs的单位体积下群速度外积

    Fig. 4.  (a) Lattice vibration spectra of boron arsenide and gallium arsenide; (b) outer product of group velocities per unit volume of boron phosphide, boron arsenide, boron antimony, gallium phosphide and gallium arsenide.

    表 1  BP, BAs, BSb以及Si的横向光学模式最大振动频率(${\omega _{{\rm{TO}}}}$)、横向声学模式最大振动频率(${\omega _{{\rm{TA}}}}$)、频率间隙($\varDelta = {\omega _{{\rm{TO}}}} - {\omega _{{\rm{TA}}}}$)、组成化合物的元素的原子质量(m, M)、C

    Table 1.  Maximum vibration frequency of transverse optical mode, maximum vibration frequency of transverse acoustic mode, frequency gap, atomic mass of elements of compound and elastic force constant of boron phosphide, boron arsenide, boron antimonide and silicon.

    物理量BAsBPBSbSi
    ${\omega _{{\rm{TO}}}}$/THz19.1922.6016.9014.84
    ${\omega _{{\rm{TA}}}}$/THz8.9315.156.4811.09
    Δ/THz10.267.4510.423.75
    m/amu10.810.810.828.09
    M/amu74.9530.97121.828.09
    $\left( {\sqrt {\tfrac{ {\rm{1} } }{m} } - \sqrt {\tfrac{ {\rm{1} } }{M} } } \right)$/amu–0.50.1880.1240.2130
    力常数C/(eV·Å–2)15.291119.098212.300412.3523
    $\sqrt C $/(eV0.5·Å–1)3.9104.3703.5073.514
    下载: 导出CSV

    表 2  各族元素原子p轨道能量(单位为Ry), 其中列出了具体的元素名称

    Table 2.  Atomic p orbital energies of each group of elements (in Ry), and the specific names of the elements are listed.

    原子轨
    道能量
    IIA或IIB族IIIA族IVA族VA族VIA族
    2pBeBCNO
    –0.1608–0.2795–0.4044–0.5382–0.6819
    3pMgAlSiPS
    –0.1068–0.2103–0.3125–0.4174–0.5288
    4pZnGaGeAsSe
    –0.0964–0.2073–0.3040–0.3985–0.4956
    5pCdInSnSbTe
    –0.1034–0.2044–0.2907–0.3734–0.4557
    6pHgTlPbBiPo
    –0.0928–0.1957–0.2788–0.3569–0.4335
    下载: 导出CSV
  • [1]

    王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东 2019 物理学报 68 090201Google Scholar

    Wang T, Chen H Y, Qiu P F, Shi X, Chen L D 2019 Acta Phys. Sin. 68 090201Google Scholar

    [2]

    张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [3]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [4]

    Wei L, Kuo P K, Thomas R L, Anthony T R, Banholzer W F 1993 Phys. Rev. Lett. 70 3764Google Scholar

    [5]

    Lindsay L, Broido D A 2008 J. Phys.: Condens. Matter 20 165209Google Scholar

    [6]

    Holland M G 1964 Phys. Rev. 134 A471Google Scholar

    [7]

    Feng T, Lindsay L, Ruan X 2017 Phys. Rev. B 96 161201Google Scholar

    [8]

    Lindsay L, Broido D A, Mingo N 2009 Phys. Rev. B 80 125407Google Scholar

    [9]

    Yang X, Feng T, Li J, Ruan X 2019 Phys. Rev. B 100 245203Google Scholar

    [10]

    Shiga T, Shiomi J, Ma J, Delaire O, Radzynski T, Lusakowski A, Esfarjani K, Chen G 2012 Phys. Rev. B 85 155203Google Scholar

    [11]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [12]

    Dames C 2018 Science 361 549Google Scholar

    [13]

    Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575Google Scholar

    [14]

    Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G, Lv B 2018 Science 361 579Google Scholar

    [15]

    Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Gamage G A G U, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G, Ren Z 2018 Science 361 582Google Scholar

    [16]

    Lindsay L, Broido D A, Reinecke T L 2013 Phys. Rev. Lett. 111 025901Google Scholar

    [17]

    Cao R, Deng H X, Luo J W, Wei S H 2019 J. Semicond. 40 042102Google Scholar

    [18]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [19]

    Maradudin A A, Fein A E 1962 Phys. Rev. 128 2589Google Scholar

    [20]

    Lax M, Hu P, Narayanamurti V 1981 Phys. Rev. B 23 3095Google Scholar

    [21]

    Ward A, Broido D A, Stewart D A, Deinzer G 2009 Phys. Rev. B 80 125203Google Scholar

    [22]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922Google Scholar

    [23]

    Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G 2012 Phys. Rev. B 85 184303Google Scholar

    [24]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

    [26]

    Mizokami K, Togo A, Tanaka I 2018 Phys. Rev. B 97 224306Google Scholar

    [27]

    Chaput L 2013 Phys. Rev. Lett. 110 265506Google Scholar

    [28]

    Wang L 2019 J. Semicond. 40 091101Google Scholar

    [29]

    Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B, Cahill D G 2018 Adv. Funct. Mater. 28 1805116Google Scholar

    [30]

    Kang J S, Wu H, Hu Y 2017 Nano Lett. 17 7507Google Scholar

    [31]

    Kumashiro Y, Mitsuhashi T, Okaya S, Muta F, Koshiro T, Takahashi Y, Mirabayashi M 1989 J. Appl. Phys. 65 2147Google Scholar

    [32]

    Berman R, Hudson P R W, Martinez M 1975 J. Phys. C: Solid State Phys. 8 430Google Scholar

    [33]

    Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R, Banholzer W F 1993 Phys. Rev. B 47 14850Google Scholar

    [34]

    基泰尔C著 (项金钟, 吴兴惠译) 2005 固体物理导论 (北京: 化学工业出版社) 第71−74页

    Kittel C (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp71−74 (in Chinese)

    [35]

    Pavone P, Karch K, Schutt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 48 3156Google Scholar

    [36]

    Fukumoto A 1990 Phys. Rev. B 42 7462Google Scholar

    [37]

    Harrison W A 2004 Elementary Electronic Structure (Revised Edition) (Singapore: World Scientific Publishing Co Pte Ltd) pp126−128

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [3] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [5] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [6] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [9] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [10] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [11] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [12] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [13] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [14] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [15] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [16] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [17] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [18] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [19] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
计量
  • 文章访问数:  7306
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-05-09
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-20

/

返回文章
返回