搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含单排线缺陷锯齿型石墨烯纳米带的电磁性质

张华林 孙琳 王鼎

引用本文:
Citation:

含单排线缺陷锯齿型石墨烯纳米带的电磁性质

张华林, 孙琳, 王鼎

Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect

Zhang Hua-Lin, Sun Lin, Wang Ding
PDF
导出引用
  • 基于密度泛函理论的第一性原理方法, 研究了含单排线缺陷锯齿型石墨烯纳米带(ZGNR)的电磁性质, 主要计算了该缺陷处于不同位置时的能带结构、透射谱、自旋极化电荷密度、总能以及布洛赫态. 研究表明, 含单排线缺陷的ZGNR和无缺陷的ZGNR在非磁性态和铁磁态下都为金属. 虽然都为金属, 但其呈金属性的成因有差异. 在反铁磁态下, 单排线缺陷越靠近ZGNR的边缘, 对ZGNR电磁性质的影响越明显, 缺陷由ZGNR对称轴线向边缘移动过程中, 含单排线缺陷的ZGNR有一个半导体-半金属-金属的相变过程. 虽然线缺陷靠近中线的ZGNR为半导体, 但由于缺陷引入新的能带, 导致含单排线缺陷的ZGNR的带隙小于无缺陷ZGNR的带隙. 单排线缺陷紧邻边界时, 含缺陷ZGNR最稳定; 单排线缺陷位于次近邻边界位置时, 含缺陷ZGNR最不稳定. 在反铁磁态下, 对单排线缺陷位于对称轴线的ZGNR施加适当的横向电场, 可以实现半导体到半金属的转变. 这些研究结果对于发展基于石墨烯的纳米电子器件有重要的意义.
    In this paper, electromagnetic properties of the zigzag graphene nanoribbon (ZGNR) with a single-row line defect are studied by using the first-principles method based on the density functional theory. The energy band structures, transmission spectra, spin polarization charge densities, total energies, and Bloch states of the ZGNR are calculated when the line defect is located at different positions inside a ZGNR. It is shown that ZGNRs with and without a line defect at nonmagnetic and ferromagnetic states are metals, but the reasons for it to become different metals are different. At the antiferromagnetic state, the closer to the edge of ZGNR the line defect, the more obvious the influence on electromagnetic properties of ZGNR is. In the process of the defect moving from the symmetrical axis of ZGNR to the edge, the ZGNR has a phase transition from a semiconductor to a half metal, and then to a metal gradually. Although the ZGNR with a line defect close to the central line is a semiconductor, its band gap is smaller than the band gap of perfect ZGNR, owing to the new band introduced by the defects. When the line defect is located nearest to the boundary, the ZGNR is stablest. When the line defect is located next nearest to the boundary, the ZGNR is unstablest. When the line defect is located nearest or next nearest to boundary, the ground state of the ZGNR is a ferromagnetic state. However, if the line defect is located at the symmetric axis of ZGNR (M5) or nearest to the symmetric axis, the ground state would be an antiferromagnetic state. At the antiferromagnetic state, the phase transition of M5 from a semiconductor to a half metal can be achieved by applying an appropriate transverse electric field. Without a transverse electric field, M5 is a semiconductor, and the band structures of up-and down-spin states are both degenerate. With a transverse electric field, band structures of up-and down-spin states near the Fermi level are both split. When the electric field intensity is 2 V/nm, M5 is a half metal. These obtained results are of significance for developing electronic nanodevices based on graphene.
      通信作者: 张华林, zhanghualin0703@126.com
    • 基金项目: 国家自然科学基金(批准号: 11374002)、湖南省高校科技创新团队支持计划和湖南省重点学科建设项目资助的课题.
      Corresponding author: Zhang Hua-Lin, zhanghualin0703@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374002), the Aid Program for the Science and Technology Innovation Team in Colleges and Universities of Hunan Province, China, and the Construct Program of the Key Discipline in Hunan Province, China.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [3]

    Li J, Zhang Z H, Zhang J J, Tian W, Fan Z Q, Deng X Q, Tang G P 2013 Org. Electron. 14 958

    [4]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [5]

    Westervelt R M 2008 Science 320 324

    [6]

    Matulis A, Peeters F M 2008 Phys. Rev. B 77 115423

    [7]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [8]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [9]

    Sahu B, Min H, MacDonald A H, Banerjeel S K 2008 Phys. Rev. B 78 045404

    [10]

    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [11]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501

    [12]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [13]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [14]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [15]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese) [王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [16]

    Zhang W X, He C, Li T, Gong S B 2015 RSC Adv. 5 33407

    [17]

    Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y, Jena P 2012 Phys. Rev. B 85 155450

    [18]

    Tang G P, Zhang Z H, Deng X Q, Fan Z Q, Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638

    [19]

    Tang G P, Zhou J C, Zhang Z H, Deng X Q, Fan Z Q 2013 Carbon 60 94

    [20]

    Dai Q Q, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 4791

    [21]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanatechnol. 5 326

    [22]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [23]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [24]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [25]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 013503

    [26]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 092102

    [27]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 2575

    [28]

    Young W S, Marvin L C, Steven G L 2006 Nature 444 347

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [3]

    Li J, Zhang Z H, Zhang J J, Tian W, Fan Z Q, Deng X Q, Tang G P 2013 Org. Electron. 14 958

    [4]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [5]

    Westervelt R M 2008 Science 320 324

    [6]

    Matulis A, Peeters F M 2008 Phys. Rev. B 77 115423

    [7]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [8]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [9]

    Sahu B, Min H, MacDonald A H, Banerjeel S K 2008 Phys. Rev. B 78 045404

    [10]

    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [11]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501

    [12]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [13]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [14]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [15]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese) [王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [16]

    Zhang W X, He C, Li T, Gong S B 2015 RSC Adv. 5 33407

    [17]

    Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y, Jena P 2012 Phys. Rev. B 85 155450

    [18]

    Tang G P, Zhang Z H, Deng X Q, Fan Z Q, Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638

    [19]

    Tang G P, Zhou J C, Zhang Z H, Deng X Q, Fan Z Q 2013 Carbon 60 94

    [20]

    Dai Q Q, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 4791

    [21]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanatechnol. 5 326

    [22]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [23]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [24]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [25]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 013503

    [26]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 092102

    [27]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 2575

    [28]

    Young W S, Marvin L C, Steven G L 2006 Nature 444 347

  • [1] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [2] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [3] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [4] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [5] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [6] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [7] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [9] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [10] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [11] 曹永军, 江鑫. 二维磁振子晶体中线缺陷模的性质及其应用. 物理学报, 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
    [12] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [13] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [14] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [15] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [16] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [19] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [20] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
计量
  • 文章访问数:  3731
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-08
  • 修回日期:  2015-09-17
  • 刊出日期:  2016-01-05

含单排线缺陷锯齿型石墨烯纳米带的电磁性质

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
  • 通信作者: 张华林, zhanghualin0703@126.com
    基金项目: 国家自然科学基金(批准号: 11374002)、湖南省高校科技创新团队支持计划和湖南省重点学科建设项目资助的课题.

摘要: 基于密度泛函理论的第一性原理方法, 研究了含单排线缺陷锯齿型石墨烯纳米带(ZGNR)的电磁性质, 主要计算了该缺陷处于不同位置时的能带结构、透射谱、自旋极化电荷密度、总能以及布洛赫态. 研究表明, 含单排线缺陷的ZGNR和无缺陷的ZGNR在非磁性态和铁磁态下都为金属. 虽然都为金属, 但其呈金属性的成因有差异. 在反铁磁态下, 单排线缺陷越靠近ZGNR的边缘, 对ZGNR电磁性质的影响越明显, 缺陷由ZGNR对称轴线向边缘移动过程中, 含单排线缺陷的ZGNR有一个半导体-半金属-金属的相变过程. 虽然线缺陷靠近中线的ZGNR为半导体, 但由于缺陷引入新的能带, 导致含单排线缺陷的ZGNR的带隙小于无缺陷ZGNR的带隙. 单排线缺陷紧邻边界时, 含缺陷ZGNR最稳定; 单排线缺陷位于次近邻边界位置时, 含缺陷ZGNR最不稳定. 在反铁磁态下, 对单排线缺陷位于对称轴线的ZGNR施加适当的横向电场, 可以实现半导体到半金属的转变. 这些研究结果对于发展基于石墨烯的纳米电子器件有重要的意义.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回