搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯电极的Co-Salophene分子器件的自旋输运

陈伟 陈润峰 李永涛 俞之舟 徐宁 卞宝安 李兴鳌 汪联辉

引用本文:
Citation:

基于石墨烯电极的Co-Salophene分子器件的自旋输运

陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉

Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes

Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui
PDF
导出引用
  • 采用基于非平衡格林函数结合第一性原理的密度泛函理论的计算方法,研究了基于锯齿型石墨纳米带电极的Co-Salophene分子器件的自旋极化输运性质.计算结果表明,当左右电极为平行自旋结构时,自旋向上的电流明显大于自旋向下的电流,自旋向下的电流在[-1 V,1 V]偏压下接近零,分子器件表现出优异的自旋过滤效应.与此同时,在自旋向上电流中发现负微分电阻效应.当左右电极为反平行自旋结构时,器件表现出双自旋过滤和双自旋分子整流效应.除此之外,整个分子器件还表现出较高的巨磁阻效应.通过分析器件的自旋极化透射谱、局域态密度、电极的能带结构和分子自洽投影哈密顿量,详细解释该分子器件表现出众多特性的内在机理.研究结果对设计多功能分子器件具有重要的借鉴意义.
    Molecular spintronics has attracted much attention because of many novel functionalities at the single molecule level over the past decades.Recently,much research has focused on organic molecules containing transition metals in the field of molecular spintronics,which possesses desired spin-dependent transport properties for spintronic device applications. In this paper,based on non-equilibrium Green's function formalism combined with the first-principles density functional theory,the spin-dependent transport properties of an organic Co-Salophen molecule sandwiched between two zigzag graphene nanoribbon (ZGNR) electrodes are investigated.By applying an external magnetic field,the spin directions of the left and right ZGNR electrodes may be switched to two different configurations:the parallel (P) and antiparallel (AP) spin configurations.It is found that for the P spin configuration,the spin-up current is significantly larger than the spin-down one which is nearly zero in a bias range from -1.0 V to 1.0 V,exhibiting a nearly perfect spin filtering effect (up to 100%).Moreover,the spin-up current shows negative differential resistance behavior at 0.3 V.For the AP spin configuration,the spin-down current is much larger than the spin-up one at the positive bias.On the contrary,the spinup current is much larger than the spin-down one at the positive bias.Therefore,the device exhibits bipolar spin filtering effect.It is also found that the spin-up current at the negative bias is much larger than that at the corresponding positive bias,while the spin-down current at the negative bias is much smaller than that at the corresponding positive bias,which shows the outstanding spin rectifying effect.Besides,a significant giant magnetoresistance effect is also obtained in the device when the spin directions of the left and right ZGNR electrodes switch between P and AP spin configurations. The spin transport properties of the device under P and AP spin configurations are attributed to the different orbital symmetries of spin subbands (* and ) of the electrodes and the spatial distribution of molecular orbitals within the bias window.By analyzing the spin-polarization transmission spectrum,the local density of states,the band structures and symmetries of the ZGNR electrodes and the projected self-consistent Hamiltonian states of molecular orbitals,the internal mechanism for multiple functional characteristics of the device is explained in detail.Our results indicate the Co-Salophen molecule can be a promising candidate for future applications in molecular spintronics device,and also provide a theoretical reference for designing the next-generation molecular nano-devices.
      通信作者: 李兴鳌, lixa@njupt.edu.cn;iamlhwang@njupt.edu.cn ; 汪联辉, lixa@njupt.edu.cn;iamlhwang@njupt.edu.cn
    • 基金项目: 教育部长江学者和创新团队发展计划创新团队(批准号:IRT1148)、国家自然科学基金(批准号:51372119,11404278)、江苏省高校优秀中青年教师和校长赴境外研修计划和南京邮电大学科研基金(批准号:NY214130,NY214104)资助的课题.
      Corresponding author: Li Xing-Ao, lixa@njupt.edu.cn;iamlhwang@njupt.edu.cn ; Wang Lian-Hui, lixa@njupt.edu.cn;iamlhwang@njupt.edu.cn
    • Funds: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1148), the National Natural Science Foundation of China (Grant Nos. 51372119, 11404278), Jiangsu Overseas Research Training Program for University Prominent Young Middle-aged Teachers and Presidents, and by the Natural Science Foundation of NJUPT, China (Grant Nos. NY214130, NY214104).
    [1]

    Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nature Mater. 4 335

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Simpson G J, Hogan S W, Caffio M, Adams C J, Fruchtl H, van Mourik T, Schaub R 2014 Nano Lett. 14 634

    [4]

    Cui A, Dong H, Hu W 2015 Small 11 6115

    [5]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S 2014 Nature Nanotech. 9 830

    [6]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101

    [7]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [8]

    Cui L L, Yang B C, Li X M, Cao C, Long M Q 2014 J. Appl. Phys. 116 033701

    [9]

    Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, Kosbar L L, Graham T O, Curioni A, Andreoni W 2002 Appl. Phys. Lett. 80 2517

    [10]

    Nakabayashi J, Yamamoto D, Kurihara S 2009 Phys. Rev. Lett. 102 066803

    [11]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [12]

    Cui B, Xu Y Q, Ji G M, Wang H, Zhao W K, Zhai Y X, Li D M, Liu D S 2014 Org. Electron. 15 484

    [13]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [14]

    Deng X Q, Zhang Z H, Yang C H, Zhu H, Liang B 2013 Org. Electron. 14 3240

    [15]

    Wu T T, Wang X F, Zhai M X, Liu H, Zhou L, Jiang Y J 2012 Appl. Phys. Lett. 100 052112

    [16]

    Jiang C, Wang X F, Zhai M X 2014 Carbon 68 406

    [17]

    Ren H, Li Q X, Luo Y, Yang J 2009 Appl. Phys. Lett. 94 173110

    [18]

    Ferreira G J, Leuenberger M N, Loss D, Egues J C 2011 Phys. Rev. B 84 125453

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Long M Q, Tang L, Wang D, Wang L, Shuai Z 2009 J. Am. Chem. Soc. 131 17728

    [21]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [22]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [23]

    Kim W Y, Kim K S 2008 Nature Nanotech. 3 408

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [27]

    Wang Z F, Li Q X, Shi Q W, Wang X, Yang J, Hou J G, Chen J 2008 Appl. Phys. Lett. 92 133114

    [28]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H 2014 Carbon 66 646

    [29]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [30]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X 2016 Org. Electron. 35 1

    [31]

    Chen T, Wang L L, Li X F, Luo K W, Xu L, Li Q, Zhang X H, Long M Q 2014 RSC Adv. 4 60376

    [32]

    Tan C M, Zhou Y H, Chen C Y, Yu J F, Chen K Q 2016 Org. Electron. 28 244

    [33]

    Wu Q H, Zhao P, Liu D S 2016 RSC Adv. 6 16634

    [34]

    Zhu L, Zou F, Gao J H, Fu Y S, Gao G Y, Fu H H, Wu M H, L J T, Yao K L 2015 Nanotechnology 26 315201

    [35]

    An Y P, Yang Z Q 2012 J. Appl. Phys. 111 043713

    [36]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

    [37]

    Zhao P, Liu D, Chen G 2016 Org. Electron. 36 160

    [38]

    Niu P B, Shi Y L, Sun Z 2015 Chin. Phys. Lett. 32 117201

    [39]

    Bella D S, Fragala I, Ledoux I, Diaz-Garcia M A, Marks T J 1995 J. Am. Chem. Soc. 117 9481

    [40]

    Ortiz B, Park S M 2000 Bull. Korean Chem. Soc. 21 4405

    [41]

    DiLullo A, Chang S H, Baadji N, Clark K, Klckner J P, Prosenc M H, Sanvito S, Wiesendanger R, Hoffmann G, Hla S W 2012 Nano Lett. 12 3174

    [42]

    Bazarnik M, Bugenhagen B, Elsebach M, Sierda E, Frank A, Prosenc M H, Wiesendanger R 2016 Nano Lett. 16 577

    [43]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K J 1996 Phys. Soc. Jpn. 5 1920

    [44]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [45]

    Zeng M G, Shen L, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [46]

    Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802

    [47]

    Wang Z F, Li Q X, Shi Q W, Wang X P 2008 Appl. Phys. Lett. 92 133114

    [48]

    Stokbro K, Taylor J, Brandbyge M, Mozos J L, Ordejon P 2003 Comput. Mater. Sci. 27 151

    [49]

    Brown E R, Sderstrm J R, Parker C D, Mahoney L J, Molvar K M, McGill T C 1991 Appl. Phys. Lett. 58 2291

    [50]

    Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A, Frazier G A 1998 IEEE J. Solid-St. Circ. 33 1342

    [51]

    Mathews R H, Sage J P, Sollner T G, Calawa S D, Chen C L, Mahoney L J, Maki P A, Molvar K M 1999 Proc. IEEE 87 596

  • [1]

    Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nature Mater. 4 335

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Simpson G J, Hogan S W, Caffio M, Adams C J, Fruchtl H, van Mourik T, Schaub R 2014 Nano Lett. 14 634

    [4]

    Cui A, Dong H, Hu W 2015 Small 11 6115

    [5]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S 2014 Nature Nanotech. 9 830

    [6]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101

    [7]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [8]

    Cui L L, Yang B C, Li X M, Cao C, Long M Q 2014 J. Appl. Phys. 116 033701

    [9]

    Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, Kosbar L L, Graham T O, Curioni A, Andreoni W 2002 Appl. Phys. Lett. 80 2517

    [10]

    Nakabayashi J, Yamamoto D, Kurihara S 2009 Phys. Rev. Lett. 102 066803

    [11]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [12]

    Cui B, Xu Y Q, Ji G M, Wang H, Zhao W K, Zhai Y X, Li D M, Liu D S 2014 Org. Electron. 15 484

    [13]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [14]

    Deng X Q, Zhang Z H, Yang C H, Zhu H, Liang B 2013 Org. Electron. 14 3240

    [15]

    Wu T T, Wang X F, Zhai M X, Liu H, Zhou L, Jiang Y J 2012 Appl. Phys. Lett. 100 052112

    [16]

    Jiang C, Wang X F, Zhai M X 2014 Carbon 68 406

    [17]

    Ren H, Li Q X, Luo Y, Yang J 2009 Appl. Phys. Lett. 94 173110

    [18]

    Ferreira G J, Leuenberger M N, Loss D, Egues J C 2011 Phys. Rev. B 84 125453

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Long M Q, Tang L, Wang D, Wang L, Shuai Z 2009 J. Am. Chem. Soc. 131 17728

    [21]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [22]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [23]

    Kim W Y, Kim K S 2008 Nature Nanotech. 3 408

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [27]

    Wang Z F, Li Q X, Shi Q W, Wang X, Yang J, Hou J G, Chen J 2008 Appl. Phys. Lett. 92 133114

    [28]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H 2014 Carbon 66 646

    [29]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [30]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X 2016 Org. Electron. 35 1

    [31]

    Chen T, Wang L L, Li X F, Luo K W, Xu L, Li Q, Zhang X H, Long M Q 2014 RSC Adv. 4 60376

    [32]

    Tan C M, Zhou Y H, Chen C Y, Yu J F, Chen K Q 2016 Org. Electron. 28 244

    [33]

    Wu Q H, Zhao P, Liu D S 2016 RSC Adv. 6 16634

    [34]

    Zhu L, Zou F, Gao J H, Fu Y S, Gao G Y, Fu H H, Wu M H, L J T, Yao K L 2015 Nanotechnology 26 315201

    [35]

    An Y P, Yang Z Q 2012 J. Appl. Phys. 111 043713

    [36]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

    [37]

    Zhao P, Liu D, Chen G 2016 Org. Electron. 36 160

    [38]

    Niu P B, Shi Y L, Sun Z 2015 Chin. Phys. Lett. 32 117201

    [39]

    Bella D S, Fragala I, Ledoux I, Diaz-Garcia M A, Marks T J 1995 J. Am. Chem. Soc. 117 9481

    [40]

    Ortiz B, Park S M 2000 Bull. Korean Chem. Soc. 21 4405

    [41]

    DiLullo A, Chang S H, Baadji N, Clark K, Klckner J P, Prosenc M H, Sanvito S, Wiesendanger R, Hoffmann G, Hla S W 2012 Nano Lett. 12 3174

    [42]

    Bazarnik M, Bugenhagen B, Elsebach M, Sierda E, Frank A, Prosenc M H, Wiesendanger R 2016 Nano Lett. 16 577

    [43]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K J 1996 Phys. Soc. Jpn. 5 1920

    [44]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [45]

    Zeng M G, Shen L, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [46]

    Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802

    [47]

    Wang Z F, Li Q X, Shi Q W, Wang X P 2008 Appl. Phys. Lett. 92 133114

    [48]

    Stokbro K, Taylor J, Brandbyge M, Mozos J L, Ordejon P 2003 Comput. Mater. Sci. 27 151

    [49]

    Brown E R, Sderstrm J R, Parker C D, Mahoney L J, Molvar K M, McGill T C 1991 Appl. Phys. Lett. 58 2291

    [50]

    Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A, Frazier G A 1998 IEEE J. Solid-St. Circ. 33 1342

    [51]

    Mathews R H, Sage J P, Sollner T G, Calawa S D, Chen C L, Mahoney L J, Maki P A, Molvar K M 1999 Proc. IEEE 87 596

  • [1] 严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良. 金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用. 物理学报, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [3] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [4] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究. 物理学报, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [5] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [6] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [7] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [8] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [9] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [10] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [11] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [12] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应. 物理学报, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [13] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [14] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [15] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [16] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [17] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [18] 马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究. 物理学报, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [19] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [20] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
计量
  • 文章访问数:  6153
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-10-05

/

返回文章
返回