-
利用多巴胺氧化自聚合形成聚多巴胺(PDA)与ZnO结合形成PDA/ZnO复合阴极缓冲层,制备了以P3HT:PC61BM为活性层的倒置结构聚合物太阳能电池,通过改变PDA的自聚合时间来分析复合阴极缓冲层对器件性能的影响.实验发现,随着PDA的自聚合时间的增加,聚合物太阳能电池的光电转换效率先增大后减小,当自聚合时间为10 min时,相应器件光伏性能达到最优值,其开路电压Voc为0.66 V,短路电流密度Jsc为9.70 mA/cm2,填充因子FF为68.06%,光电转换效率PCE为4.35%.器件性能改善的原因是由于PDA/ZnO复合阴极缓冲层减小了ZnO与ITO之间的接触电阻,同时PDA中存在大量的氨基有利于倒置太阳能电池阴极对电子的收集.
-
关键词:
- 聚多巴胺 /
- 复合阴极缓冲层 /
- 倒置聚合物太阳能电池 /
- 交流阻抗谱
Inverted polymer solar cells with P3HT:PCBM as active layer are fabricated based on poly(dopamine)/ZnO (PDA/ZnO) as composite cathode buffer layer. Effects of PDA/ZnO composite cathode buffer layer with the different self-polymerization times on the device performance are investigated. According to the results, the short circuit current and photoelectric conversion efficiency of polymer solar cells first increase then decrease with the increase of the self-polymerization time of PDA. For 10-min PDA self-polymerization, the photovoltaic performance of the device achieves the optimal values:open circuit voltage 0.66 V, short circuit curent density 9.70 mA/cm2, fill factor 68.06%, and power conversion efficiency 4.35% under irratiation of light with a strength of 100 mW/cm2. We conclude that the improvement of device performance is due to the PDA/ZnO composite cathode buffer layer reduced the contact resistance between the ZnO and ITO, at the same time, the presence of a large number of nitrogen groups in PDA is advantageous for the electronic collection of the inverted polymer solar cells. Meanwhile, polymer solar cell with PDA/ZnO as composite cathode buffer layer also exhibits excelent stability. In addition, PDA has a strong adhesive force that makes the ZnO interface layer on its surface not easy to fall off. This provides a new way of fabricating the flexible polymer solar cell devices.-
Keywords:
- poly(dopamine) /
- composite cathode buffer layer /
- inverted polymer solar cells /
- AC impedance spectroscopy
[1] Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227
[2] He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174
[3] Jiang X X, Xu H, Yang L G, Shi M M, Chen H Z 2009 Sol. Energy Mater. Sol. Cells 93 605
[4] Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J 2007 Adv. Mater. 19 2445
[5] Park S, Tark S J, Lee J S, Lim H, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020
[6] Luo J, Wu H B, He C, He C, Li A Y, Yang W, Cao Y 2009 Appl. Phys. Lett. 95 043301
[7] Huang F, Wu H B, Cao Y 2010 Chem. Soc. Rev. 39 2500
[8] Yip H L, Hau S K, Baek N S, Ma H, Jen A K 2008 Adv. Mater. 20 2376
[9] Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X 2012 Energy Environ. Sci. 5 8208
[10] Kyaw A K K, Wang D H, Gupta V, Zhang J, Chand S, Bazan G C, Heeger A J 2013 Adv. Mater. 25 2397
[11] Woo S, Kim W H, Kim H, Yi Y, Lyu H K, Kim Y 2014 Adv. Energy Mater. 130 1692
[12] Lee H, Dellatore S M, Miller W M, Messersmith P B 2007 Science 318 426
[13] Ye Q, Zhou F, Liu W 2011 Chem. Soci. Rev. 40 4244
[14] Lee H, Scherer N F, Phillip B M 2006 PANS 103 12999
[15] Jin Y X, Cheng Y R, Deng D Y, Jiang C J, Qi T K, Yang D L, Xiao F 2014 Appl. Mater. Interf. 6 1447
[16] Lee H, Lee B P, Messersmith P B 2007 Nature 448 338
[17] Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y 2011 Langmuir 27 14180
[18] Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716
[19] Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104
[20] Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107
[21] Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785
[22] Zhu G, Xu T, Lv T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248
-
[1] Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227
[2] He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174
[3] Jiang X X, Xu H, Yang L G, Shi M M, Chen H Z 2009 Sol. Energy Mater. Sol. Cells 93 605
[4] Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J 2007 Adv. Mater. 19 2445
[5] Park S, Tark S J, Lee J S, Lim H, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020
[6] Luo J, Wu H B, He C, He C, Li A Y, Yang W, Cao Y 2009 Appl. Phys. Lett. 95 043301
[7] Huang F, Wu H B, Cao Y 2010 Chem. Soc. Rev. 39 2500
[8] Yip H L, Hau S K, Baek N S, Ma H, Jen A K 2008 Adv. Mater. 20 2376
[9] Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X 2012 Energy Environ. Sci. 5 8208
[10] Kyaw A K K, Wang D H, Gupta V, Zhang J, Chand S, Bazan G C, Heeger A J 2013 Adv. Mater. 25 2397
[11] Woo S, Kim W H, Kim H, Yi Y, Lyu H K, Kim Y 2014 Adv. Energy Mater. 130 1692
[12] Lee H, Dellatore S M, Miller W M, Messersmith P B 2007 Science 318 426
[13] Ye Q, Zhou F, Liu W 2011 Chem. Soci. Rev. 40 4244
[14] Lee H, Scherer N F, Phillip B M 2006 PANS 103 12999
[15] Jin Y X, Cheng Y R, Deng D Y, Jiang C J, Qi T K, Yang D L, Xiao F 2014 Appl. Mater. Interf. 6 1447
[16] Lee H, Lee B P, Messersmith P B 2007 Nature 448 338
[17] Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y 2011 Langmuir 27 14180
[18] Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716
[19] Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104
[20] Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107
[21] Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785
[22] Zhu G, Xu T, Lv T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248
计量
- 文章访问数: 7235
- PDF下载量: 176
- 被引次数: 0