搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究

李琦 章勇

引用本文:
Citation:

基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究

李琦, 章勇

Enhanced performance of inverted polymer solar cell based on Al2O3/MoO3 as composite anode buffer layer

Li Qi, Zhang Yong
PDF
导出引用
  • 采用旋涂Al2O3前驱体溶液和低温退火的方法在活性层上形成Al2O3薄膜,并与MoO3结合形成Al2O3/MoO3复合阳极缓冲层,制备了以聚3-己基噻吩:[6.6]-苯基-C61-丁酸甲酯(P3HT:PC61BM)为活性层的倒置聚合物太阳能电池,并通过改变Al2O3前驱体溶液的浓度来分析复合阳极缓冲层对器件性能的影响.结果发现,Al2O3/MoO3复合阳极缓冲层能有效调控倒置聚合物太阳能电池的光电性能及其稳定性.当Al2O3前驱体溶液的浓度为0.15%时,器件光伏性能达到最优值,与MoO3单缓冲层的器件相比,光电转换效率(PCE)由3.85%提高到4.64%;经过80天老化测试后,具有复合阳极缓冲层的器件PCE保留为初始值的76%,而单缓冲层的器件PCE已经下降到50%以下.器件性能得到改善的原因是Al2O3/MoO3复合阳极缓冲层增强了倒置太阳能电池器件阳极对空穴的收集能力,同时钝化了器件活性层,从而提升了太阳能电池器件的光伏性能及其稳定性.
    Inverted polymer solar cell with P3HT:PC61BM as an active layer is fabricated based on Al2O3/MoO3 composite anode buffer layer. Effects of Al2O3/MoO3 composite anode buffer layers with the Al2O3 precursor solutions of different concentrations on the device performance are investigated. It can be found that the Al2O3/MoO3 composite anode buffer layer can effectively enhance the photovoltaic performance and device stability of inverted polymer solar cell. The open-circuit voltage (Voc), short-circuit current (Jsc), filling factor (FF), and photoelectric conversion efficiency (PCE) are 0.64 V, 8.62 mA/cm2, 63.86%, and 3.85% respectively for the control device with MoO3 single buffer layer. In addition, with the increase of the concentration of Al2O3 precursor solution, the photovoltaic performance of the inverted polymer solar cell with Al2O3/MoO3 composite anode buffer layer is gradually improved. For the Al2O3 precursor solution of 0.15%, the photovoltaic performance of the device reaches an optimal value, and the corresponding Voc, Jsc, FF, and PCE are 0.65 V, 11.04 mA/cm2, 64.46%, and 4.64%, respectively. The Jsc and PCE significantly increase by 28% and 20%, respectively, compared with those of the control device with MoO3 single buffer layer. Moreover, after 80 days of measuring the device lifetime, the PCE of the device with the composite anode buffer layer remains at 76% of the original value while the PCE with the single buffer layer is reduced below 50%. The improvement of the device performance should be attributed to the PC61BM receptor near the anode dissolved and washed by isopropyl alcohol solvent from the Al2O3 precursor solution. At the same time, a large number of pits on the surface of the active layer are filled with Al2O3 to make it more smoothly contact the composite anode buffer layer. Therefore, the contact resistance between the active layer and the anode decreases, which enhances hole collection performance of the anode. Simultaneously, the Al2O3 layer can passivate the active layer of the device, thus improving the photovoltaic performance and device stability of inverted polymer solar cell.
      通信作者: 章勇, zycq@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377065,61574064)和广东省科技计划(批准号:2013B040402009,2014B090915004,2015B010132009)资助的课题.
      Corresponding author: Zhang Yong, zycq@scnu.edu.cn
    • Funds: Project supported by the Nature Science Foundation of China (Grant Nos. 61377065, 61574064) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013B040402009, 2014B090915004, 2015B010132009).
    [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Weickert J, Sun H, Palumbiny C, Hesse H C, Mende L S 2010 Sol. Energy Mater. Sol. Cells 94 2371

    [4]

    Kim K J, Kim Y S, Kang W S, Kang B H, Yeom S H, Kim D E, Kim J H, Kang S W 2010 Sol. Energy Mater. Sol. Cells 94 1303

    [5]

    Norrman K, Madsen M V, Gevorgyan S A, Krebs F C 2010 J. Am. Chem. Soc. 132 16883

    [6]

    Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley D C, Durrant J R 2006 Sol. Energy Mater. Sol. Cells 90 3520

    [7]

    Irwin M D, Buchholz D B, Hains A W, Chang R P, Marks T J 2008 Proc. Nat. Acad. Sci. USA 105 2783

    [8]

    Espinosa N, Dam H F, Tanenbaum D M, Andreasen J W, Jorgensen M, Krebs F C 2011 Materials 4 169

    [9]

    Long Y 2010 Sol. Energy Mater. Sol. Cells 94 744

    [10]

    Qin P L, Fang G J, Sun N H, Fan X, Zheng Q, Chen F, Wan J W, Zhao X Z 2011 Thin Solid Films 519 4334

    [11]

    Zhao D W, Tan S T, Ke L, Liu P, Kyaw A K K, Sun X W, Lo G Q, Kwong D L 2010 Sol. Energy Mater. Sol. Cells. 94 985

    [12]

    Kim D Y, Subbiah J, Sarasqueta G, So F, Ding H 2009 Appl. Phys. Lett. 95 093304

    [13]

    Cheng F, Fang G J, Fan X, Liu N S, Sun N H, Qin P L, Zheng Q, Wan J W, Zhao X Z 2011 Sol. Energy Mater. Sol. Cells. 95 2914

    [14]

    Qin P L, Fang G J, Ke W J, Zheng Q, Wen J W, Lei H W, Zhao X Z 2014 J. Mater. Chem. A 2 2742

    [15]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695

    [16]

    Li Z Q, Guo W B, Liu C Y, Zhang X Y, Li S J, Guo J X, Zhang L 2017 Phys. Chem. Chem. Phys. 19 20839

    [17]

    Vitanov P, Harizanova A, Ivanova T 2009 Thin Solid Films 517 6327

    [18]

    Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H, Zhang H Z, Ji W Y 2016 ACS Appl. Mater. Interfaces 8 31385

    [19]

    Zhou L, Zhuang J Y, Tongay S, Su W M, Cui Z 2013 J. Appl. Phys. 114 074506

    [20]

    Peng J, Sun Q J, Zhai Z C, Yuan J Y, Huang X D, Jin Z M, Li K Y, Wang S D, Wang H Q, Ma W L 2013 Nanotechnology 24 484010

    [21]

    David E A, Mott N F 1970 Philos. Mag. 22 903

    [22]

    Gao L H, Wang F C, Ma Z, Liao Y B, Li D R, Shen L N 2009 Rare Metal Mat. Eng. 38 773

    [23]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [24]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [25]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 1 2107

    [26]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [27]

    Zhu G, Xu T, L T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

    [28]

    Zhu K, Neale N R, Miedaner A, Frank A J 2007 Nano Lett. 7 69

  • [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Weickert J, Sun H, Palumbiny C, Hesse H C, Mende L S 2010 Sol. Energy Mater. Sol. Cells 94 2371

    [4]

    Kim K J, Kim Y S, Kang W S, Kang B H, Yeom S H, Kim D E, Kim J H, Kang S W 2010 Sol. Energy Mater. Sol. Cells 94 1303

    [5]

    Norrman K, Madsen M V, Gevorgyan S A, Krebs F C 2010 J. Am. Chem. Soc. 132 16883

    [6]

    Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley D C, Durrant J R 2006 Sol. Energy Mater. Sol. Cells 90 3520

    [7]

    Irwin M D, Buchholz D B, Hains A W, Chang R P, Marks T J 2008 Proc. Nat. Acad. Sci. USA 105 2783

    [8]

    Espinosa N, Dam H F, Tanenbaum D M, Andreasen J W, Jorgensen M, Krebs F C 2011 Materials 4 169

    [9]

    Long Y 2010 Sol. Energy Mater. Sol. Cells 94 744

    [10]

    Qin P L, Fang G J, Sun N H, Fan X, Zheng Q, Chen F, Wan J W, Zhao X Z 2011 Thin Solid Films 519 4334

    [11]

    Zhao D W, Tan S T, Ke L, Liu P, Kyaw A K K, Sun X W, Lo G Q, Kwong D L 2010 Sol. Energy Mater. Sol. Cells. 94 985

    [12]

    Kim D Y, Subbiah J, Sarasqueta G, So F, Ding H 2009 Appl. Phys. Lett. 95 093304

    [13]

    Cheng F, Fang G J, Fan X, Liu N S, Sun N H, Qin P L, Zheng Q, Wan J W, Zhao X Z 2011 Sol. Energy Mater. Sol. Cells. 95 2914

    [14]

    Qin P L, Fang G J, Ke W J, Zheng Q, Wen J W, Lei H W, Zhao X Z 2014 J. Mater. Chem. A 2 2742

    [15]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695

    [16]

    Li Z Q, Guo W B, Liu C Y, Zhang X Y, Li S J, Guo J X, Zhang L 2017 Phys. Chem. Chem. Phys. 19 20839

    [17]

    Vitanov P, Harizanova A, Ivanova T 2009 Thin Solid Films 517 6327

    [18]

    Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H, Zhang H Z, Ji W Y 2016 ACS Appl. Mater. Interfaces 8 31385

    [19]

    Zhou L, Zhuang J Y, Tongay S, Su W M, Cui Z 2013 J. Appl. Phys. 114 074506

    [20]

    Peng J, Sun Q J, Zhai Z C, Yuan J Y, Huang X D, Jin Z M, Li K Y, Wang S D, Wang H Q, Ma W L 2013 Nanotechnology 24 484010

    [21]

    David E A, Mott N F 1970 Philos. Mag. 22 903

    [22]

    Gao L H, Wang F C, Ma Z, Liao Y B, Li D R, Shen L N 2009 Rare Metal Mat. Eng. 38 773

    [23]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [24]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [25]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 1 2107

    [26]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [27]

    Zhu G, Xu T, L T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

    [28]

    Zhu K, Neale N R, Miedaner A, Frank A J 2007 Nano Lett. 7 69

  • [1] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用. 物理学报, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [2] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [3] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [4] 李琦, 章勇. 基于聚多巴胺/氧化锌复合阴极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2017, 66(19): 198201. doi: 10.7498/aps.66.198201
    [5] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究. 物理学报, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [6] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究. 物理学报, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [7] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [8] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [10] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度. 物理学报, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [11] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [12] 孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷的层裂强度及冲击压缩损伤机理研究. 物理学报, 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [13] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [14] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [15] 王军转, 石卓琼, 娄昊楠, 章新栾, 左则文, 濮林, 马恩, 张荣, 郑有炓, 陆昉, 施毅. 掺铒Si/Al2O3多层结构中结晶形态对1.54 μm发光的影响. 物理学报, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [16] 黄文波, 曾文进, 王 藜, 彭俊彪. 聚合物发光二极管中的负电容效应. 物理学报, 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [17] 黄文波, 彭俊彪. 高分子发光二极管载流子注入过程研究. 物理学报, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [18] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性. 物理学报, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [19] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析. 物理学报, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [20] 李晓溪, 贾天卿, 冯东海, 徐至展. 超短脉冲激光照射下氧化铝的烧蚀机理. 物理学报, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
计量
  • 文章访问数:  6135
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-26
  • 修回日期:  2017-11-29
  • 刊出日期:  2019-03-20

/

返回文章
返回