搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔石墨烯纳米带各向异性和超低热导的理论研究

吴成伟 任雪 周五星 谢国锋

引用本文:
Citation:

多孔石墨烯纳米带各向异性和超低热导的理论研究

吴成伟, 任雪, 周五星, 谢国锋

Theoretical study of anisotropy and ultra-low thermal conductance of porous graphene nanoribbons

Wu Cheng-Wei, Ren Xue, Zhou Wu-Xing, Xie Guo-Feng
PDF
HTML
导出引用
  • 利用非平衡格林函数方法研究了多孔石墨烯纳米带的热输运性质. 结果表明, 由于纳米孔洞的存在, 多孔石墨烯纳米带的热导远低于石墨烯纳米带的热导. 室温下, 锯齿型多孔石墨烯纳米带的热导仅为相同尺寸锯齿型石墨烯纳米带热导的12%. 这是由于多孔石墨烯纳米带中的纳米孔洞导致的声子局域化引起的. 另外, 多孔石墨烯纳米带的热导具有显著的各向异性特征. 相同尺寸下, 扶手椅型多孔石墨烯纳米带的热导是锯齿型多孔石墨烯纳米带的2倍左右. 这是因为锯齿型方向上声子局域比扶手椅型方向上更加强烈, 甚至部分频率的声子被完全局域导致的.
    The thermal transport properties of porous graphene nanoribbons are studied by the non-equilibrium Green's function method. The results show that owing to the existence of nano-pores, the thermal conductance of porous graphene nanoribbons is much lower than that of graphene nanoribbons. At room temperature, the thermal conductance of zigzag porous graphene nanoribbons is only 12% of that of zigzag graphene nanoribbons of the same size. This is due to the phonon localization caused by the nano-pores in the porous graphene nanoribbons. In addition, the thermal conductance of porous graphene nanoribbons has remarkable anisotropy. With the same size, the thermal conductance of armchair porous graphene nanoribbons is about twice higher than that of zigzag porous graphene nanoribbons. This is because the phonon locality in the zigzag direction is stronger than that in the armchair direction, and even part of the frequency phonons are completely localized.
      通信作者: 周五星, wuxingzhou@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074115, 11874145)资助的课题
      Corresponding author: Zhou Wu-Xing, wuxingzhou@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074115, 11874145).
    [1]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [2]

    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [3]

    Gao H, Wang L, Zhao J, Ding F, Lu J 2011 J. Phys. Chem. C 115 3236Google Scholar

    [4]

    Sławińska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433Google Scholar

    [5]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [6]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [7]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770Google Scholar

    [8]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103Google Scholar

    [9]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [10]

    Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano. 5 1042Google Scholar

    [11]

    Kaur S, Narang S B, Randhawa D K K 2017 J. Mater. Res. 32 1149Google Scholar

    [12]

    Du L, Nguyen T N, Gilman A, Muniz A R, Maroudas D 2017 Phys. Rev. B 96 245422

    [13]

    Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Func. Mater. 27 1702824Google Scholar

    [14]

    Sadeghzadeh S, Rezapour N 2016 Superlattice. Microst. 100 97Google Scholar

    [15]

    Nemnes G A, Visan C, Manolescu A 2017 J. Mater. Chem. C 5 4435

    [16]

    Sadeghi H, Sangtarash S, Lambert C J 2015 Sci. Rep. 5 9514Google Scholar

    [17]

    Hu S, An M, Yang N, Li B 2016 Nanotechnology 27 265702Google Scholar

    [18]

    Baskin A, Kral P 2011 Sci. Rep. 1 36Google Scholar

    [19]

    Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar

    [20]

    Xiao Y, Chen Q Y, Ma D K, Yang N, Hao Q 2019 arXiv preprint arXiv: 1910.04913

    [21]

    Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A 2018 Science 360 6385

    [22]

    Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T 2019 Carbon 147 377Google Scholar

    [23]

    Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959Google Scholar

    [24]

    Feng T, Ruan X 2016 Carbon 101 107Google Scholar

    [25]

    Singh D, Shukla V, Ahuja R 2020 Phys. Rev. B 102 075444Google Scholar

    [26]

    陈晓彬, 段文晖 2015 物理学报 64 186302Google Scholar

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar

    [27]

    吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江 2018 物理学报 67 026501Google Scholar

    Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J 2018 Acta Phys. Sin. 67 026501Google Scholar

    [28]

    吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超 2017 物理学报 66 116501Google Scholar

    Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J, Cen C 2017 Acta Phys. Sin. 66 116501Google Scholar

    [29]

    姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102Google Scholar

    Yao H F, XieY E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102Google Scholar

    [30]

    Zhou W X, Chen K Q 2015 Carbon 85 24Google Scholar

    [31]

    Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188Google Scholar

    [32]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar

    [33]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406Google Scholar

    [34]

    Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [35]

    Peng Y N, Yu J F, Cao X H, Wu D, Jia P Z, Zhou W X, Chen K Q 2020 Physica E:Low-Dimens. Syst. Nanostruct. 122 114160Google Scholar

    [36]

    Gale J. D. 1997 J. Chem. Soc. , Faraday Trans. 93 629Google Scholar

    [37]

    Lu Y, Guo J 2012 Appl. Phys. Lett. 101 043112Google Scholar

    [38]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441Google Scholar

    [39]

    Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T 2007 Phys. Rev. B 75 075412Google Scholar

    [40]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Condens. Matter 14 783Google Scholar

    [41]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [42]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

  • 图 1  (a) 多孔石墨烯结构图, 红色代表C原子, 白色代表H原子; (b) 纳米带NPZGNR-1和NPZGNR-2的结构图; (c) 纳米带NPAGNR-1和NPAGNR-2的结构图

    Fig. 1.  (a) Structures of nano-porous graphene, red atoms represent C, white atoms represent H; (b) structures of NPZGNR-1 and NPZGNR-2; (c) structures of NPAGNR-1 and NPAGNR-2.

    图 2  AGNR-2和NPAGNR-2的热导和温度的关系(a), 以及对应的声子透射谱图(b); ZGNR-2和NPZGNR-2的热导和温度的关系(c), 以及对应的声子透射谱图(d)

    Fig. 2.  (a) Thermal conductance of AGNR-2 and NPAGNR-2 with different temperatures; (b) phonon transmission spectrumof AGNR-2 and NPAGNR-2; (c) thermal conductance of ZGNR-2 and NPZGNR-2 with different temperatures; (d) phonon transmission spectrum of ZGNR-2 and NPZGNR-2.

    图 3  ZGNR-2和NPZGNR-2在频率50 cm–1, 500 cm–1, 815 cm–1下的局域声子态密度图

    Fig. 3.  LDOS of ZGNR-2 and NPZGNR-2 at 50 cm–1, 500 cm–1 and 815 cm–1.

    图 4  (a) NPAGNR-1, NPAGNR-2, NPAGNR-3的热导与温度的关系图; (b) NPZGNR-1, NPZGNR-2, NPZGNR-3的热导与温度的关系图

    Fig. 4.  (a) Thermal conductance of NPAGNR-1, NPAGNR-2 and NPAGNR-3 with different temperatures; (b) thermal conductance of NPZGNR-1, NPZGNR-2 and NPZGNR-3 with different temperatures.

    图 5  AGNR-2和NPZGNR-3的热导与温度的关系图(a) 以及对应的声子透射谱图(b)

    Fig. 5.  (a) Thermal conductance of NPAGNR-2 and NPZGNR-3 with different temperatures; (b) the corresponding phonon transmission spectrum.

    图 6  NPAGNR-2和NPZGNR-3在频率80 cm–1, 315 cm–1, 725 cm–1下的声子局域态密度

    Fig. 6.  LDOS of NPAGNR-2 and NPZGNR-3 at 80 cm–1, 315 cm–1 and 725 cm–1.

  • [1]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [2]

    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [3]

    Gao H, Wang L, Zhao J, Ding F, Lu J 2011 J. Phys. Chem. C 115 3236Google Scholar

    [4]

    Sławińska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433Google Scholar

    [5]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [6]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [7]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770Google Scholar

    [8]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103Google Scholar

    [9]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [10]

    Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano. 5 1042Google Scholar

    [11]

    Kaur S, Narang S B, Randhawa D K K 2017 J. Mater. Res. 32 1149Google Scholar

    [12]

    Du L, Nguyen T N, Gilman A, Muniz A R, Maroudas D 2017 Phys. Rev. B 96 245422

    [13]

    Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Func. Mater. 27 1702824Google Scholar

    [14]

    Sadeghzadeh S, Rezapour N 2016 Superlattice. Microst. 100 97Google Scholar

    [15]

    Nemnes G A, Visan C, Manolescu A 2017 J. Mater. Chem. C 5 4435

    [16]

    Sadeghi H, Sangtarash S, Lambert C J 2015 Sci. Rep. 5 9514Google Scholar

    [17]

    Hu S, An M, Yang N, Li B 2016 Nanotechnology 27 265702Google Scholar

    [18]

    Baskin A, Kral P 2011 Sci. Rep. 1 36Google Scholar

    [19]

    Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar

    [20]

    Xiao Y, Chen Q Y, Ma D K, Yang N, Hao Q 2019 arXiv preprint arXiv: 1910.04913

    [21]

    Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A 2018 Science 360 6385

    [22]

    Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T 2019 Carbon 147 377Google Scholar

    [23]

    Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959Google Scholar

    [24]

    Feng T, Ruan X 2016 Carbon 101 107Google Scholar

    [25]

    Singh D, Shukla V, Ahuja R 2020 Phys. Rev. B 102 075444Google Scholar

    [26]

    陈晓彬, 段文晖 2015 物理学报 64 186302Google Scholar

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar

    [27]

    吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江 2018 物理学报 67 026501Google Scholar

    Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J 2018 Acta Phys. Sin. 67 026501Google Scholar

    [28]

    吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超 2017 物理学报 66 116501Google Scholar

    Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J, Cen C 2017 Acta Phys. Sin. 66 116501Google Scholar

    [29]

    姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102Google Scholar

    Yao H F, XieY E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102Google Scholar

    [30]

    Zhou W X, Chen K Q 2015 Carbon 85 24Google Scholar

    [31]

    Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188Google Scholar

    [32]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar

    [33]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406Google Scholar

    [34]

    Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [35]

    Peng Y N, Yu J F, Cao X H, Wu D, Jia P Z, Zhou W X, Chen K Q 2020 Physica E:Low-Dimens. Syst. Nanostruct. 122 114160Google Scholar

    [36]

    Gale J. D. 1997 J. Chem. Soc. , Faraday Trans. 93 629Google Scholar

    [37]

    Lu Y, Guo J 2012 Appl. Phys. Lett. 101 043112Google Scholar

    [38]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441Google Scholar

    [39]

    Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T 2007 Phys. Rev. B 75 075412Google Scholar

    [40]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Condens. Matter 14 783Google Scholar

    [41]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [42]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理. 物理学报, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 王孟妮, 刘珍, 顾浩, 张福建, 张忠强, 丁建宁. 多孔石墨烯时间维度反渗透滤盐机理研究. 物理学报, 2022, 71(13): 138201. doi: 10.7498/aps.71.20212283
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [5] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211477
    [6] 张忠强, 于凡顺, 刘珍, 张福建, 程广贵. 氢化多孔石墨烯反渗透特性及机理分析. 物理学报, 2020, 69(9): 098201. doi: 10.7498/aps.69.20191761
    [7] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能. 物理学报, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [8] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [9] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [10] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [11] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响. 物理学报, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [12] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性. 物理学报, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [13] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [14] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质. 物理学报, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [15] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导. 物理学报, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [16] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运. 物理学报, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [17] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [18] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导. 物理学报, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [19] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性. 物理学报, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [20] 赵建华, 陈 勃, 王德亮. 纳米晶锐钛矿相TiO2的非简谐效应和声子局域. 物理学报, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
计量
  • 文章访问数:  4615
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2021-09-16
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回