搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多端口石墨烯系统中的非局域电阻

王孜博 江华 谢心澄

引用本文:
Citation:

多端口石墨烯系统中的非局域电阻

王孜博, 江华, 谢心澄

Nonlocal resistance in multi-terminal graphene system

Wang Zi-Bo, Jiang Hua, Xie Xin-Cheng
PDF
导出引用
  • 非局域测量方法由于其能够间接探测某些难以直接俘获的非平庸物理机理,近年来已逐渐成为凝聚态物理的研究热点之一.最近的实验在H形多端口石墨烯样品中发现了巨大的非局域电阻信号.在排除了经典欧姆、边缘态等可能的输运形式后,人们倾向于认为这类非局域电阻是由多端石墨烯系统中存在的自旋霍尔效益或谷霍尔效应所导致.借助于非平衡格林函数输运计算,目前的理论可以在同样的多端石墨烯体系中得到部分与实验符合较好的数值模拟结果.针对实验中发现的某些难以理解的、甚至与经典理论相矛盾的非局域电阻性质,例如非局域电阻相比局域电阻在偏离电中性点时的迅速衰减、出现在能隙中的非局域电阻峰值等,目前的理论研究取得了一定的进展,但对这些奇异现象的理解仍存在较大的争议.本综述详细回顾了多端口石墨烯体系中非局域电阻的相关实验,并针对性地介绍与之配套的理论进展及对未来研究的展望.
    Since the nonlocal measurement is helpful in discovering nontrivial physics that is too difficult to detect directly, the nonlocal measurement has now become one of the research focuses in condensed matter physics. Recent experiments find the signal of the giant nonlocal resistance in an H-shaped multi-terminal graphene system. After excluding other possible transport mechanisms, such as the classic Ohmic diffusion and the edge states, researchers tend to believe that the nonlocal resistance signal originates from the spin/valley Hall effect existing in graphene sample. Based on the Landauer-Buttiker formula, the numerical results make a relatively perfect match with the experimental data in the same multi-terminal graphene system. However, though the theoretic research has made certain progress in explaining the existence of the nonlocal resistance, it is still difficult to understand some exotic behaviors of the nonlocal resistance, which exhibits properties even contradictory to the known classical theories. For instance, the nonlocal resistance decreases to zero much more rapidly than the local one, and the giant peak of the nonlocal resistance appears inside the energy gap of the graphene. In this review, the experiments focusing on the nonlocal resistance in multi-terminal graphene system are carefully reviewed. Besides, this review also shows the associated theoretic studies, and an overlook of the future study is also provided.
      通信作者: 江华, jianghuaphy@suda.edu.cnc
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB921102,2014CB920901)、国家自然科学基金(批准号:11704348,11374219,11534001,11404300)和科学挑战计划(批准号:TZ2016003-1)资助的课题.
      Corresponding author: Jiang Hua, jianghuaphy@suda.edu.cnc
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921102, 2014CB920901), the National Natural Science Foundation of China (Grant Nos. 11704348, 11374219, 11534001, 11404300), and the Science Challenge Project, China (Grant No. TZ2016003-1).
    [1]

    Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 Science 325 294

    [2]

    Chang C Z, Zhao W, Kim K Y, Wei P, Jain J K, Liu C, Chan M H W, Moodera J S 2015 Phys. Rev. Lett. 115 057206

    [3]

    Parameswaran S A, Grover T, Abanin D A, Pesin D A, Vishwanath A 2014 Phys. Rev. X 4 031035

    [4]

    McEuen P L, Szafer A, Richter C A, Alphenaar B W, Jain J K, Stone A D, Wheeler R G, Sacks R N 1990 Phys. Rev. Lett. 64 2062

    [5]

    Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, Geim A K 2011 Science 332 328

    [6]

    Balakroshnan J, Koon G K W, Jaiswal M, Castro Neto A H, Ozyilmaz B 2013 Nat. Phys. 9 284

    [7]

    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigoreiva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [8]

    Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nat. Phys. 11 1032

    [9]

    Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nat. Phys. 11 1027

    [10]

    Yamamoto M, Shimazaki Y, Borzenets I V, Tarucha S 2015 J. Phys. Soc. Jpn. 84 121006

    [11]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [12]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [13]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603

    [14]

    Kato Y K, Myers R C, Gossard A C, Awsschalom D D 2004 Science 306 1910

    [15]

    Kimura T, Otani Y 2007 Phys. Rev. Lett. 99 196604

    [16]

    Brune C, Roth A, Novik E G, Konig M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J, Molenkamp L W 2010 Nat. Phys. 6 448

    [17]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602

    [18]

    Wang Z, Liu H, Jiang H, Xie X C 2016 Phys. Rev. B 94 035409

    [19]

    Tuan D V, Marmolejo-Tejada J M, Waiintal X, Nikolic B K, Valenzuela S O, Roche S 2016 Phys. Rev. Lett. 117 176602

    [20]

    Chen C L, Chang C R, Nikolic B K 2012 Phys. Rev. B 85 155414

    [21]

    Renard J, Studer M, Folk J A 2014 Phys. Rev. Lett. 112 116601

    [22]

    Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, Chen C T 2016 Nat. Mater. 15 711

    [23]

    Abanin D A, Gorbachev R V, Novoselov K S, Geim A K, Levitov L S 2011 Phys. Rev. Lett. 107 096601

    [24]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [25]

    Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601

    [26]

    Marmolejo-Tejada J M, Garcia J H, Chang P H, Sheng X L, Cresti A, Roche S, Nikolic B K 2017 arXiv: 1706.09361v1 [cond-mat.mes-hall]

    [27]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [28]

    Valenzuela S O, Tinkham M 2006 Nature 442 176

    [29]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [30]

    Balakrishnan J, Koon G K W, Avsar A, Ho Y, Lee J H, Jaiswal M, Baeck S, Ahn J, Ferreira A, Cazalilla M A, Castro Neto A H, Ozyilmaz B 2014 Nat. Commun. 5 4748

    [31]

    Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304

    [32]

    Mihajlovic G, Pearson J E, Garcia M A, Bader S D, Hoffmann A 2009 Phys. Rev. Lett. 103 166601

    [33]

    Sheng L, Sheng D N, Ting C S 2005 Phys. Rev. Lett. 94 016602

    [34]

    Huang C, Chong Y D, Cazalilla M A 2017 Phys. Rev. Lett. 119 136804

    [35]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [36]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421

    [37]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [38]

    Zhai F, Zhao X, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442

    [39]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [40]

    Zhai F, Ma Y L, Chang K 2011 New J. Phys. 13 083029

    [41]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [42]

    Cresti A, Nikolic B K, Garcia J H, Roche S 2016 La Rivista Del Nuovo Cimento 12 587

  • [1]

    Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 Science 325 294

    [2]

    Chang C Z, Zhao W, Kim K Y, Wei P, Jain J K, Liu C, Chan M H W, Moodera J S 2015 Phys. Rev. Lett. 115 057206

    [3]

    Parameswaran S A, Grover T, Abanin D A, Pesin D A, Vishwanath A 2014 Phys. Rev. X 4 031035

    [4]

    McEuen P L, Szafer A, Richter C A, Alphenaar B W, Jain J K, Stone A D, Wheeler R G, Sacks R N 1990 Phys. Rev. Lett. 64 2062

    [5]

    Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, Geim A K 2011 Science 332 328

    [6]

    Balakroshnan J, Koon G K W, Jaiswal M, Castro Neto A H, Ozyilmaz B 2013 Nat. Phys. 9 284

    [7]

    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigoreiva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [8]

    Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nat. Phys. 11 1032

    [9]

    Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nat. Phys. 11 1027

    [10]

    Yamamoto M, Shimazaki Y, Borzenets I V, Tarucha S 2015 J. Phys. Soc. Jpn. 84 121006

    [11]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [12]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [13]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603

    [14]

    Kato Y K, Myers R C, Gossard A C, Awsschalom D D 2004 Science 306 1910

    [15]

    Kimura T, Otani Y 2007 Phys. Rev. Lett. 99 196604

    [16]

    Brune C, Roth A, Novik E G, Konig M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J, Molenkamp L W 2010 Nat. Phys. 6 448

    [17]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602

    [18]

    Wang Z, Liu H, Jiang H, Xie X C 2016 Phys. Rev. B 94 035409

    [19]

    Tuan D V, Marmolejo-Tejada J M, Waiintal X, Nikolic B K, Valenzuela S O, Roche S 2016 Phys. Rev. Lett. 117 176602

    [20]

    Chen C L, Chang C R, Nikolic B K 2012 Phys. Rev. B 85 155414

    [21]

    Renard J, Studer M, Folk J A 2014 Phys. Rev. Lett. 112 116601

    [22]

    Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, Chen C T 2016 Nat. Mater. 15 711

    [23]

    Abanin D A, Gorbachev R V, Novoselov K S, Geim A K, Levitov L S 2011 Phys. Rev. Lett. 107 096601

    [24]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [25]

    Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601

    [26]

    Marmolejo-Tejada J M, Garcia J H, Chang P H, Sheng X L, Cresti A, Roche S, Nikolic B K 2017 arXiv: 1706.09361v1 [cond-mat.mes-hall]

    [27]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [28]

    Valenzuela S O, Tinkham M 2006 Nature 442 176

    [29]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [30]

    Balakrishnan J, Koon G K W, Avsar A, Ho Y, Lee J H, Jaiswal M, Baeck S, Ahn J, Ferreira A, Cazalilla M A, Castro Neto A H, Ozyilmaz B 2014 Nat. Commun. 5 4748

    [31]

    Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304

    [32]

    Mihajlovic G, Pearson J E, Garcia M A, Bader S D, Hoffmann A 2009 Phys. Rev. Lett. 103 166601

    [33]

    Sheng L, Sheng D N, Ting C S 2005 Phys. Rev. Lett. 94 016602

    [34]

    Huang C, Chong Y D, Cazalilla M A 2017 Phys. Rev. Lett. 119 136804

    [35]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [36]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421

    [37]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [38]

    Zhai F, Zhao X, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442

    [39]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [40]

    Zhai F, Ma Y L, Chang K 2011 New J. Phys. 13 083029

    [41]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [42]

    Cresti A, Nikolic B K, Garcia J H, Roche S 2016 La Rivista Del Nuovo Cimento 12 587

  • [1] 赵宗阳, 李铭, 周涛. 石墨烯类超导体的单磁性杂质效应. 物理学报, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [2] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响. 物理学报, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [3] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [4] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态. 物理学报, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [6] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [7] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [8] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [9] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [10] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 韩秀峰, 万蔡华. 一种数据非易失性、多功能和可编程的自旋逻辑研究进展. 物理学报, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [13] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [14] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [15] 邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙. 光子石墨烯中赝磁场作用下的谷霍尔效应. 物理学报, 2017, 66(14): 144204. doi: 10.7498/aps.66.144204
    [16] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [17] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [18] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [19] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [20] 谭振兵, 马丽, 刘广同, 吕力, 杨昌黎. 石墨烯量子霍尔平台与平台之间转变的标度律关系. 物理学报, 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
计量
  • 文章访问数:  6274
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2017-10-07
  • 刊出日期:  2017-11-05

/

返回文章
返回