搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于六角氮化硼二维薄膜的忆阻器

吴全潭 时拓 赵晓龙 张续猛 伍法才 曹荣荣 龙世兵 吕杭炳 刘琦 刘明

引用本文:
Citation:

基于六角氮化硼二维薄膜的忆阻器

吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明

Two-dimensional hexagonal boron nitride based memristor

Wu Quan-Tan, Shi Tuo, Zhao Xiao-Long, Zhang Xu-Meng, Wu Fa-Cai, Cao Rong-Rong, Long Shi-Bing, Lü Hang-Bing, Liu Qi, Liu Ming
PDF
导出引用
  • 报道了一种基于多层六角氮化硼(h-BN)二维薄膜的忆阻器件.该器件不需要电预处理过程,且具有自限流的双极性阻变行为;具有较好的抗疲劳性和较长的数据保持时间.该器件在脉冲编程条件下具有模拟转变特性,即在连续的电压脉冲下器件的电阻态能被连续地调控,使得该器件能够模仿神经网络系统中的神经突触权重变化行为.综上所述,基于多层h-BN的忆阻器具有应用在非易失性存储和神经计算中的潜力.
    Hexagonal boron nitride (h-BN) based resistive switching device is fabricated with the multilayer h-BN film serving as an active material. The device shows the coexistence of forming-free and self-compliance bipolar resistive switching behavior with reproducible switching endurance and long retention time. Moreover, the device in pulse mode shows analog resistive switching characteristics, i.e. the resistance states can be continuously tuned by successive voltage pulses. This suggests that the device is also capable of mimicking the synaptic weight changes in neuromorphic systems.
      通信作者: 刘琦, liuqi@ime.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61521064,61422407,61474136,61334007,61404164,61574166,61522408)、国家重点研发计划(批准号:2017YFB0405603,2016YFA0201803)和中国科学院战略性先导科技专项(B类)(批准号:XDPB0603)资助的课题.
      Corresponding author: Liu Qi, liuqi@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61521064, 61422407, 61474136, 61334007, 61404164, 61574166, 61522408), the National Key RD Program of China (Grant Nos. 2017YFB0405603, 2016YFA0201803), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDPB0603).
    [1]

    Prakash A, Maikap S, Lai C S, Lee H Y, Chen W S, Chen F T, Tsai M J 2012 Jpn. J. Appl. Phys. 51 04DD06

    [2]

    Lee H Y, Chen Y S, Chen P S, Wu T Y, Chen F, Wang C C, Tzeng P J, Tsai M J, Lien C 2010 IEEE Electron Dev. Lett. 31 44

    [3]

    Su S, Jian X C, Wang F, Han Y M, Tian Y X, Wang X Y, Zhang H Z, Zhang K L 2016 Chin. Phys. B 25 107302

    [4]

    Tan T, Guo T, Wu Z, Liu Z 2016 Chin. Phys. B 25 117306

    [5]

    Gao X P, Fu L P, Chen C B, Yuan P, Li Y T 2016 Chin. Phys. B 25 106102

    [6]

    Park W Y, Kim G H, Seok J Y, Kim K M, Song S J, Lee M H, Hwang C S 2010 Nanotechnology 21 195201

    [7]

    Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [8]

    Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Medeiros-Ribeiro G, Williams R S 2010 Appl. Phys. Lett. 97 232102

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Shi T, Yin X B, Yang R, Guo X 2016 Phys. Chem. Chem. Phys. 18 9338

    [11]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [12]

    Shi T, Yang R, Guo X 2016 Solid State Ionics 296 114

    [13]

    Shi T, Wu J F, Liu Y, Yang R, Guo X 2017 Adv. Electron. Mater. 3 1700046

    [14]

    Yao J, Lin J, Dai Y H, Ruan G D, Yan Z, Li L, Zhong L, Natelson D, Tour J M 2012 Nat. Commun. 3 1101

    [15]

    Liu S, Lu N, Zhao X, Xu H, Banerjee W, L H, Long S, Li Q, Liu Q, Liu M 2016 Adv. Mater. 28 10623

    [16]

    Hong S K, Kim J E, Kim S O, Cho B J 2011 J. Appl. Phys. 110 044506

    [17]

    Sangwan V K, Jariwala D, Kim I S, Chen K S, Marks T J, Lauhon L J, Hersam M C 2015 Nat. Nanotech. 10 403

    [18]

    Park S, Lee J, Kim H S, Park J B, Lee K H, Han S A, Hwang S, Kim S W, Shin H J 2015 ACS Nano 9 633

    [19]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942

    [20]

    Qian K, Tay R Y, Nguyen V C, Wang J, Cai G, Chen T, Teo E H T, Lee P S 2016 Adv. Funct. Mater. 26 2176

    [21]

    Puglisi F M, Larcher L, Pan C, Xiao N, Shi Y, Hui F, Lanza M 2016 2016 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, December 3-7, 2016 p6651209

    [22]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916

    [23]

    Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D, Meng X M 2017 Small 13 1604179

    [24]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209

    [25]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134

    [26]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [27]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

  • [1]

    Prakash A, Maikap S, Lai C S, Lee H Y, Chen W S, Chen F T, Tsai M J 2012 Jpn. J. Appl. Phys. 51 04DD06

    [2]

    Lee H Y, Chen Y S, Chen P S, Wu T Y, Chen F, Wang C C, Tzeng P J, Tsai M J, Lien C 2010 IEEE Electron Dev. Lett. 31 44

    [3]

    Su S, Jian X C, Wang F, Han Y M, Tian Y X, Wang X Y, Zhang H Z, Zhang K L 2016 Chin. Phys. B 25 107302

    [4]

    Tan T, Guo T, Wu Z, Liu Z 2016 Chin. Phys. B 25 117306

    [5]

    Gao X P, Fu L P, Chen C B, Yuan P, Li Y T 2016 Chin. Phys. B 25 106102

    [6]

    Park W Y, Kim G H, Seok J Y, Kim K M, Song S J, Lee M H, Hwang C S 2010 Nanotechnology 21 195201

    [7]

    Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [8]

    Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Medeiros-Ribeiro G, Williams R S 2010 Appl. Phys. Lett. 97 232102

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Shi T, Yin X B, Yang R, Guo X 2016 Phys. Chem. Chem. Phys. 18 9338

    [11]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [12]

    Shi T, Yang R, Guo X 2016 Solid State Ionics 296 114

    [13]

    Shi T, Wu J F, Liu Y, Yang R, Guo X 2017 Adv. Electron. Mater. 3 1700046

    [14]

    Yao J, Lin J, Dai Y H, Ruan G D, Yan Z, Li L, Zhong L, Natelson D, Tour J M 2012 Nat. Commun. 3 1101

    [15]

    Liu S, Lu N, Zhao X, Xu H, Banerjee W, L H, Long S, Li Q, Liu Q, Liu M 2016 Adv. Mater. 28 10623

    [16]

    Hong S K, Kim J E, Kim S O, Cho B J 2011 J. Appl. Phys. 110 044506

    [17]

    Sangwan V K, Jariwala D, Kim I S, Chen K S, Marks T J, Lauhon L J, Hersam M C 2015 Nat. Nanotech. 10 403

    [18]

    Park S, Lee J, Kim H S, Park J B, Lee K H, Han S A, Hwang S, Kim S W, Shin H J 2015 ACS Nano 9 633

    [19]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942

    [20]

    Qian K, Tay R Y, Nguyen V C, Wang J, Cai G, Chen T, Teo E H T, Lee P S 2016 Adv. Funct. Mater. 26 2176

    [21]

    Puglisi F M, Larcher L, Pan C, Xiao N, Shi Y, Hui F, Lanza M 2016 2016 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, December 3-7, 2016 p6651209

    [22]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916

    [23]

    Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D, Meng X M 2017 Small 13 1604179

    [24]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209

    [25]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134

    [26]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [27]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

  • [1] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231972
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [4] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [5] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [6] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [7] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [8] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [9] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [11] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [12] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [13] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [14] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [15] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [17] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [18] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [19] 吉高峰, 刘胜利. 各向异性超导体电阻转变的修正Kosterlitz-Thouless相变模型. 物理学报, 2007, 56(7): 4148-4151. doi: 10.7498/aps.56.4148
    [20] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
计量
  • 文章访问数:  7455
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-26
  • 修回日期:  2017-09-13
  • 刊出日期:  2017-11-05

/

返回文章
返回