搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台式X射线系统多光栅调制屏设计与特性

汪德 谈志杰 李晴宇 喻虹 韩申生

引用本文:
Citation:

台式X射线系统多光栅调制屏设计与特性

汪德, 谈志杰, 李晴宇, 喻虹, 韩申生
cstr: 32037.14.aps.74.20250512

Design and characteristics of multi-grating modulation screen for desktop X-ray system

WANG De, TAN Zhijie, LI Qingyu, YU Hong, HAN Shensheng
cstr: 32037.14.aps.74.20250512
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 台式X射线系统存在通量低、非相干性等局限, 在显微成像、高精度测量等应用场景中面临巨大挑战. 傅里叶变换关联成像(FGI)对相干性要求较低, 据此原理发展出的空间相关多角度FGI能够有效提高成像效率, 适用于台式X射线系统. 然而该技术仍处于理论阶段, 缺乏调制X射线并形成聚焦多光束的有效器件. 为此, 本文提出一种多光栅调制方法, 将多个子光栅按特定方位排列对X射线进行调制. 单个子光栅出射的X射线为空间相干光, 各子光栅之间的X射线在样品位置非相干叠加, 从而形成聚焦的多角度光束, 有效提高台式X射线系统的通量利用率. 本文对多光栅调制屏的调制原理进行阐述, 通过数值仿真分析光栅尺寸、材质、厚度等参数的影响, 针对液态靶X射线源设计多光栅调制屏, 并完成加工. 本研究能够推动台式X射线系统在高分辨衍射成像中的应用.
    The desktop X-ray system has limitations such as low flux and poor coherence. It faces great challenges in application scenarios such as microscopic imaging and high-precision measurement. Fourier-transform ghost imaging (FGI) has low requirements for the coherence of the light source. Using this principle, multi-angle FGI based on spatial correlation can effectively improve the imaging efficiency and is suitable for desktop X-ray systems. However, this technology is still in the theoretical stage, and there is a lack of effective devices to modulate X-rays and form focused multiple beams. To this end, a multi-grating modulation method is proposed in this work. The partially coherent radiation of the X-ray source is modulated by arranging multiple sub-gratings in a specific direction. The X-ray emitted by a single sub-grating is spatially coherent light, and the X-rays between the sub-gratings are incoherently superimposed at the sample position to form a focused multi-angle beam. This effectively improves the flux utilization of the desktop system. The modulation principle of multi-grating is described theoretically, and the key design parameters and their selection basis are clarified. Through numerical simulation, the modulation characteristics of partially coherent X-rays in the propagation process behind the modulation screen are systematically analyzed. By optimizing the parameters such as the size, material and thickness of the sub-grating, the influences of the sub-grating on the size, uniformity and diffraction efficiency of the focused spot are investigated. The results show that when the sub-grating size matches the spatial coherence size of the X-ray source, the focusing effect of the beam can be significantly improved, and a smaller and uniform focal spot can be obtained. Based on the theoretical and simulation results, a gold multi-grating modulation screen is designed and fabricated for the liquid target X-ray source. The simulation and theoretical predictions will be validated experimentally, once the experimental conditions are met. The design and implementation of the modulation screen provide effective support and a feasible way for multi-angle diffraction imaging and related applications in miniaturized X-ray systems.
      通信作者: 谈志杰, tanzj@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11627811)资助的课题.
      Corresponding author: TAN Zhijie, tanzj@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11627811).
    [1]

    Chien C C, Tseng P Y, Chen H H, Hua T E, Chen S T, Chen Y Y, Leng W H, Wang C H, Hwu Y, Yin G C, Liang K S, Chen F R, Chu Y S, Yeh H I, Yang Y C, Yang CS, Zhang G L, Je J H, Margaritondo J 2013 Biotechnol. Adv. 31 375Google Scholar

    [2]

    Zhang L, Tao F, Du G, Wang J, Gao R Y, Deng B, Xiao T Q 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1057 168781Google Scholar

    [3]

    Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H D 2018 IUCrJ 5 141Google Scholar

    [4]

    Foetisch A, Filella M, Watts B, Vinot LH, Bigalke M 2022 J. Hazard. Mater. 426 127804Google Scholar

    [5]

    Miao J, Sandberg R L, Song C 2011 IEEE J. Sel. Top. 18 399

    [6]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [7]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [8]

    Yuan Q X, Deng B, Guan Y, Zhang K, Liu Y J 2019 Physics 48 205

    [9]

    Withers P J, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen C K, Maire É, Manley M, Plessis A D, Stock S 2021 R Nat. Rev. Methods Primers. 1 18Google Scholar

    [10]

    Pushie M J, Sylvain N J, Hou H, Hackett M J, Kelly M E, Webb S M 2022 Metallomics 14 mfac032Google Scholar

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [12]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [13]

    Tan Z J, Yu H, Zhu R G, Lu R H, Han S S, Xue C F, Yang S M, Wu Y Q 2022 Phys. Rev. A. 106 053521Google Scholar

    [14]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [15]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [16]

    Zhao C Z, Zhang H P, Tang J, Zhao N X, Li Z L, Xiao T Q 2024 J. Synchrotron Radiat. 31 1525Google Scholar

    [17]

    Li P, Chen X, Qiu X, Chen B L, Chen LX, Sun B Q 2024 Chin. Opt. Lett. 22 112701Google Scholar

    [18]

    Sun M J, Zhang J M 2019 Sensors 19 732Google Scholar

    [19]

    Li H Q, Hou W T, Ye Z Y, Yuan T Y, Shao S K, Xiong J, Sun T X, Sun X F 2023 Appl. Phys. Lett. 123 141101Google Scholar

    [20]

    Wittwer F, Lyubomirskiy M, Koch F, Kahnt M, Seyrich M, Garrevoet J, David C, Schroer C G 2021 Appl. Phys. Lett. 118 171102Google Scholar

    [21]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203Google Scholar

    [22]

    Li Q Y, Tan Z J, Wang D, Yu H, Han S S 2025 Phys. Rev. A. 111 033531Google Scholar

    [23]

    Zholudev S I, Terentiev S A, Polyakov S N, Martyushov S Y, Denisov V N, Kornilov N V, Polikarpov M V, Snigirev A A, Snigireva I I, Blank V D 2016 AIP Conf. Proc. 1764 020006

    [24]

    Das A, Heirwegh C M, Gao N, Elam W T, Wade L A, Clark B C, Hurowitz J A, VanBommel S J, Jones M W M, Allwood A C X 2025 X-Ray Spectrom 54 203Google Scholar

    [25]

    Marshall F J, Bahr R E, Goncharov V N, Glebov V Y, Peng B, Regan S P, Sangster T C, Stoeckl C 2017 Rev. Sci. Instrum. 88 093702Google Scholar

    [26]

    Ohba A, Nakano T, Onoda S, Mochizuki T, Nakamoto K 2021 Rev. Sci. Instrum. 92 093704Google Scholar

    [27]

    Chen B Y, Yin G C, Lee C Y, Hsu M Y, Lin B H, Tseng S C, Li X Y, Chen H Y, Wu J X, Chang S H, Tang M T 2018 Synchrotron Radiat. News 31 27Google Scholar

    [28]

    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V, David C 2017 Sci. Rep. 7 43624Google Scholar

    [29]

    Li T, Senesi A J, Lee B 2016 Chem. Rev. 116 11128Google Scholar

    [30]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [31]

    Zhu Z, Ellis R A, Pang S 2018 Optica 5 733Google Scholar

    [32]

    Born M, Wolf E 2013 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier) pp572–577

    [33]

    Moreau P A, Toninelli E, Morris P A, Aspden R S, Gregory T, Spalding G, Boyd R W, Padgett M J 2018 Opt. Express 26 7528Google Scholar

    [34]

    Goodman J W 2005 Introduction to Fourier Optics (Roberts and Company publishers) pp80–82

    [35]

    Palmer C, Loewen E G 2005 Diffraction grating handbook (Newport Corporation) pp21–22

    [36]

    Harvey J E, Pfisterer R N 2019 Opt. Eng. 58 087105

    [37]

    Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J 2006 J. Synchrotron Radiat. 13 351Google Scholar

    [38]

    许成文, 钟理京, 秦应雄, 郭海平, 唐霞辉 2016 中国激光 43 102001Google Scholar

    Xu C W, Zhong L J, Qin Y X, Guo H P, Tang X H 2016 Chin. J. Lasers. 43 102001Google Scholar

    [39]

    谢常青 2022 光学精密工程 30 1815Google Scholar

    Xie C Q 2022 Opt. Precis. Eng. 30 1815Google Scholar

    [40]

    邱克强, 徐向东, 刘颖, 洪义麟, 付绍军 2008 物理学报 57 6329Google Scholar

    Qiu K Q, Xu X D, Liu Y, Hong Y L, Fu S J 2008 Acta Phys. Sin. 57 6329Google Scholar

    [41]

    高雅增, 吴鹿杰, 卢维尔, 刘虹遥, 夏洋, 赵丽莉, 李艳丽, 孔祥东, 韩立 2021 光学学报 41 1111002Google Scholar

    Gao Y Z, Wu L J, Lu W E, Liu H Y, Xia Y, Zhao L L, Li Y L, Kong X D, Han L 2021 Acta Opt. Sin. 41 1111002Google Scholar

    [42]

    杨家敏, 丁耀南, 崔明启, 曹磊峰, 丁永坤, 朱佩平, 赵屹东, 杨国洪, 郑志坚, 王耀梅, 张文海, 黎刚 2000 强激光与粒子束 12 723

    Yang J M, Ding Y N, Cui Q M, Cao L F, Ding Y K, Zhu P P, Zhao Y D, Yang G H, Zheng Y J, Wang Y N, Zhang W H, Ni G 2000 High Power Laser Part. Beams 12 723

    [43]

    Pinzek S J 2023 Ph. D. Dissertation (Munich: Technische Universität München

    [44]

    Burwitz V, Reinsch K, Greiner J, Rauch T, Suleimanov V, Walter F W, Mennickent R E, Predehl P 2007 Adv. Space Res. 40 1294Google Scholar

    [45]

    Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H, Shimura T 2014 Opt. Lett. 39 4297Google Scholar

    [46]

    Moore A S, Guymer T M, Kline J L, Morton J, Taccetti M, Lanier N E, Bentley C, Workman J, Peterson B, Mussack K, Cowan J, Prasad R, Richardson M, Burns S, Kalantar D H, Benedetti L R, Bell P, Bradley D, Hsing W, Stevenson M 2012 Rev. Sci. Instrum. 83 10E132

    [47]

    Gross H, Henn M, Heidenreich S, Rathsfeld A, Bär M 2012 Appl. Opt. 51 7384Google Scholar

    [48]

    Wansleben M, Zech C, Streeck C, Weser J, Genzel C, Beckhoff B, Mainz R 2019 J. Anal. At. Spectrom. 34 1497Google Scholar

    [49]

    Tong X, Chen Y F, Mu C Y, Chen Q C, Zhang X Z, Zeng G, Li Y C, Xu Z J, Zhao J, Zhen X J, Mao C W, Lu H L, Tai R Z 2023 Nanotechnology 34 215301Google Scholar

  • 图 1  多光栅调制屏调制原理 (a) 多光栅调制的光路示意图; (b) 多光栅调制屏的二维结构

    Fig. 1.  Modulation principle of multi-grating modulation: (a) Optical schematic diagram of multi-grating modulation; (b) two-dimensional structure of multi-grating modulation screen.

    图 2  调制屏后光束传播过程中光斑的强度分布演变的结果 (a) 距离调制屏不同位置$z$处的光斑的强度分布三维图; (b) z = 0.19 m处((a)图)的强度分布二维图; (c) (b)图横截面强度分布曲线

    Fig. 2.  Simulation results of the evolution of the intensity distribution of the spot in the process of beam propagation behind the modulation screen: (a) Three-dimensional diagram of the intensity distribution of spot at different positions $z$ from the modulation screen; (b) two-dimensional diagram of the intensity distribution of the pattern in Fig.(a) at z = 0.19 m; (c) cross section curve of the intensity distribution of Fig.(b).

    图 3  不同归一化光栅尺寸${R_{\text{l}}}$下的仿真结果 (a) ${R_{\text{l}}}$ = 0.5时的光斑强度分布; (b) ${R_{\text{l}}}$ = 1时的光斑强度分布; (c) ${R_{\text{l}}}$ = 2.4时的光斑强度分布; (d) 光斑的FWHM随归一化光栅尺寸变化的曲线; (e) 光斑均匀性随归一化光栅尺寸变化的曲线

    Fig. 3.  Simulation results under different normalized grating sizes ${R_{\text{l}}}$: (a) The intensity distribution of the spot when ${R_{\text{l}}}$ = 0.5; (b) the intensity distribution of the spot when ${R_{\text{l}}}$ = 1; (c) the intensity distribution of the spot when ${R_{\text{l}}}$ = 2.4; (d) the curve of the FWHM of the spot changing with the normalized grating size; (e) the curve of the uniformity of the spot with the change of the normalized grating size.

    图 4  多光栅调制屏的衍射特性仿真结果 (a) 1 ${\text{nm}}$波长下不同材料的多光栅调制屏衍射效率随厚度变化的曲线; (b) 不同光源波长对应的最大衍射效率及最佳光栅厚度

    Fig. 4.  Simulation results of diffraction characteristics of multi-grating modulation screen: (a) Diffraction efficiency curves of multi-grating modulation screens made of different materials as a function of thickness at a wavelength of 1${\text{nm}}$; (b) maximum diffraction efficiency and optimal grating thickness for different source wavelengths.

    图 5  调制屏尺寸与后焦距对最小光栅周期和系统空间分辨率的影响 (a)—(c) 在调制屏前焦距分别为0.2, 0.36和0.5 m时, 最小光栅周期随调制屏尺寸与后焦距的变化关系; (d)—(f) 在最小光栅周期不小于200 nm的约束条件下, 当调制屏前焦距分别为0.2, 0.36和0.5 m时, 系统空间分辨率随调制屏尺寸与后焦距的变化情况

    Fig. 5.  Influence of the size of the modulation screen and the back focal length on the minimum grating period and the spatial resolution of the system: (a)–(c) When the focal lengths in front of the modulation screen are 0.2, 0.36 and 0.5 m, respectively, the minimum grating period varies with the size of the modulation screen and the back focal length; (d)–(f) under the constraint that the minimum grating period is not less than 200 nm, when the front focal length of the modulation screen is 0.2, 0.36 and 0.5 m, the spatial resolution of the system varies with the size of the modulation screen and the back focal length.

    图 6  多光栅调制屏 (a) 调制屏实物图; (b) 调制屏的整体分布图像; (c) 单个光栅SEM平面图像; (d) 光栅的部分结构SEM图像

    Fig. 6.  Multi-grating modulation screen: (a) Photograph of the modulation screen; (b) overall distribution image of the modulation screen; (c) SEM image of a single grating plane; (d) SEM image of the partial structure of the grating.

  • [1]

    Chien C C, Tseng P Y, Chen H H, Hua T E, Chen S T, Chen Y Y, Leng W H, Wang C H, Hwu Y, Yin G C, Liang K S, Chen F R, Chu Y S, Yeh H I, Yang Y C, Yang CS, Zhang G L, Je J H, Margaritondo J 2013 Biotechnol. Adv. 31 375Google Scholar

    [2]

    Zhang L, Tao F, Du G, Wang J, Gao R Y, Deng B, Xiao T Q 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1057 168781Google Scholar

    [3]

    Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H D 2018 IUCrJ 5 141Google Scholar

    [4]

    Foetisch A, Filella M, Watts B, Vinot LH, Bigalke M 2022 J. Hazard. Mater. 426 127804Google Scholar

    [5]

    Miao J, Sandberg R L, Song C 2011 IEEE J. Sel. Top. 18 399

    [6]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [7]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [8]

    Yuan Q X, Deng B, Guan Y, Zhang K, Liu Y J 2019 Physics 48 205

    [9]

    Withers P J, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen C K, Maire É, Manley M, Plessis A D, Stock S 2021 R Nat. Rev. Methods Primers. 1 18Google Scholar

    [10]

    Pushie M J, Sylvain N J, Hou H, Hackett M J, Kelly M E, Webb S M 2022 Metallomics 14 mfac032Google Scholar

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [12]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [13]

    Tan Z J, Yu H, Zhu R G, Lu R H, Han S S, Xue C F, Yang S M, Wu Y Q 2022 Phys. Rev. A. 106 053521Google Scholar

    [14]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [15]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [16]

    Zhao C Z, Zhang H P, Tang J, Zhao N X, Li Z L, Xiao T Q 2024 J. Synchrotron Radiat. 31 1525Google Scholar

    [17]

    Li P, Chen X, Qiu X, Chen B L, Chen LX, Sun B Q 2024 Chin. Opt. Lett. 22 112701Google Scholar

    [18]

    Sun M J, Zhang J M 2019 Sensors 19 732Google Scholar

    [19]

    Li H Q, Hou W T, Ye Z Y, Yuan T Y, Shao S K, Xiong J, Sun T X, Sun X F 2023 Appl. Phys. Lett. 123 141101Google Scholar

    [20]

    Wittwer F, Lyubomirskiy M, Koch F, Kahnt M, Seyrich M, Garrevoet J, David C, Schroer C G 2021 Appl. Phys. Lett. 118 171102Google Scholar

    [21]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203Google Scholar

    [22]

    Li Q Y, Tan Z J, Wang D, Yu H, Han S S 2025 Phys. Rev. A. 111 033531Google Scholar

    [23]

    Zholudev S I, Terentiev S A, Polyakov S N, Martyushov S Y, Denisov V N, Kornilov N V, Polikarpov M V, Snigirev A A, Snigireva I I, Blank V D 2016 AIP Conf. Proc. 1764 020006

    [24]

    Das A, Heirwegh C M, Gao N, Elam W T, Wade L A, Clark B C, Hurowitz J A, VanBommel S J, Jones M W M, Allwood A C X 2025 X-Ray Spectrom 54 203Google Scholar

    [25]

    Marshall F J, Bahr R E, Goncharov V N, Glebov V Y, Peng B, Regan S P, Sangster T C, Stoeckl C 2017 Rev. Sci. Instrum. 88 093702Google Scholar

    [26]

    Ohba A, Nakano T, Onoda S, Mochizuki T, Nakamoto K 2021 Rev. Sci. Instrum. 92 093704Google Scholar

    [27]

    Chen B Y, Yin G C, Lee C Y, Hsu M Y, Lin B H, Tseng S C, Li X Y, Chen H Y, Wu J X, Chang S H, Tang M T 2018 Synchrotron Radiat. News 31 27Google Scholar

    [28]

    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V, David C 2017 Sci. Rep. 7 43624Google Scholar

    [29]

    Li T, Senesi A J, Lee B 2016 Chem. Rev. 116 11128Google Scholar

    [30]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [31]

    Zhu Z, Ellis R A, Pang S 2018 Optica 5 733Google Scholar

    [32]

    Born M, Wolf E 2013 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier) pp572–577

    [33]

    Moreau P A, Toninelli E, Morris P A, Aspden R S, Gregory T, Spalding G, Boyd R W, Padgett M J 2018 Opt. Express 26 7528Google Scholar

    [34]

    Goodman J W 2005 Introduction to Fourier Optics (Roberts and Company publishers) pp80–82

    [35]

    Palmer C, Loewen E G 2005 Diffraction grating handbook (Newport Corporation) pp21–22

    [36]

    Harvey J E, Pfisterer R N 2019 Opt. Eng. 58 087105

    [37]

    Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J 2006 J. Synchrotron Radiat. 13 351Google Scholar

    [38]

    许成文, 钟理京, 秦应雄, 郭海平, 唐霞辉 2016 中国激光 43 102001Google Scholar

    Xu C W, Zhong L J, Qin Y X, Guo H P, Tang X H 2016 Chin. J. Lasers. 43 102001Google Scholar

    [39]

    谢常青 2022 光学精密工程 30 1815Google Scholar

    Xie C Q 2022 Opt. Precis. Eng. 30 1815Google Scholar

    [40]

    邱克强, 徐向东, 刘颖, 洪义麟, 付绍军 2008 物理学报 57 6329Google Scholar

    Qiu K Q, Xu X D, Liu Y, Hong Y L, Fu S J 2008 Acta Phys. Sin. 57 6329Google Scholar

    [41]

    高雅增, 吴鹿杰, 卢维尔, 刘虹遥, 夏洋, 赵丽莉, 李艳丽, 孔祥东, 韩立 2021 光学学报 41 1111002Google Scholar

    Gao Y Z, Wu L J, Lu W E, Liu H Y, Xia Y, Zhao L L, Li Y L, Kong X D, Han L 2021 Acta Opt. Sin. 41 1111002Google Scholar

    [42]

    杨家敏, 丁耀南, 崔明启, 曹磊峰, 丁永坤, 朱佩平, 赵屹东, 杨国洪, 郑志坚, 王耀梅, 张文海, 黎刚 2000 强激光与粒子束 12 723

    Yang J M, Ding Y N, Cui Q M, Cao L F, Ding Y K, Zhu P P, Zhao Y D, Yang G H, Zheng Y J, Wang Y N, Zhang W H, Ni G 2000 High Power Laser Part. Beams 12 723

    [43]

    Pinzek S J 2023 Ph. D. Dissertation (Munich: Technische Universität München

    [44]

    Burwitz V, Reinsch K, Greiner J, Rauch T, Suleimanov V, Walter F W, Mennickent R E, Predehl P 2007 Adv. Space Res. 40 1294Google Scholar

    [45]

    Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H, Shimura T 2014 Opt. Lett. 39 4297Google Scholar

    [46]

    Moore A S, Guymer T M, Kline J L, Morton J, Taccetti M, Lanier N E, Bentley C, Workman J, Peterson B, Mussack K, Cowan J, Prasad R, Richardson M, Burns S, Kalantar D H, Benedetti L R, Bell P, Bradley D, Hsing W, Stevenson M 2012 Rev. Sci. Instrum. 83 10E132

    [47]

    Gross H, Henn M, Heidenreich S, Rathsfeld A, Bär M 2012 Appl. Opt. 51 7384Google Scholar

    [48]

    Wansleben M, Zech C, Streeck C, Weser J, Genzel C, Beckhoff B, Mainz R 2019 J. Anal. At. Spectrom. 34 1497Google Scholar

    [49]

    Tong X, Chen Y F, Mu C Y, Chen Q C, Zhang X Z, Zeng G, Li Y C, Xu Z J, Zhao J, Zhen X J, Mao C W, Lu H L, Tai R Z 2023 Nanotechnology 34 215301Google Scholar

  • [1] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究. 物理学报, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 曹奇志, 唐金凤, 潘杨柳, 江敏, 蒋思悦, 张晶, 贾辰凌, 樊东鑫, 邓婷, 王华华, 段炼. 线性剪切空间调制快拍成像动态定标技术. 物理学报, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [4] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [5] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [6] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [7] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [8] 牟欢, 李保权, 曹阳. 基于空间应用的透射式微型微束调制X射线源. 物理学报, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [9] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍. 空间调制稳态微型快拍成像测偏技术研究. 物理学报, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [10] 王东, 马迎军, 刘泉, 史祎诗. 可见光域多波长叠层衍射成像的实验研究. 物理学报, 2015, 64(8): 084203. doi: 10.7498/aps.64.084203
    [11] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构. 物理学报, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [12] 刘海岗, 许子健, 张祥志, 郭智, 邰仁忠. 中心挡板对扫描相干X射线衍射成像的影响. 物理学报, 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [13] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [14] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [15] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [16] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究. 物理学报, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [17] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [18] 简小华, 张淳民, 赵葆常. 研究干涉图处理与光谱复原的一种新方法. 物理学报, 2007, 56(2): 824-829. doi: 10.7498/aps.56.824
    [19] 徐政, 赵小如, 吴文彬, 孙学峰, 汪良斌, 周贵恩, 李晓光, 张裕恒. Bi2Sr2CaCu2Oy单晶调制结构的X射线衍射研究. 物理学报, 1996, 45(9): 1578-1585. doi: 10.7498/aps.45.1578
    [20] 白海洋, 陈红, 张云, 王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究. 物理学报, 1993, 42(7): 1134-1140. doi: 10.7498/aps.42.1134
计量
  • 文章访问数:  866
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 修回日期:  2025-06-25
  • 上网日期:  2025-07-17
  • 刊出日期:  2025-09-05

/

返回文章
返回