搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台式X射线系统多光栅调制屏设计与特性研究

汪德 谈志杰 李晴宇 喻虹 韩申生

引用本文:
Citation:

台式X射线系统多光栅调制屏设计与特性研究

汪德, 谈志杰, 李晴宇, 喻虹, 韩申生

Research on the design and characteristics of multi-grating modulation screen for tabletop Xray system

Wang De, Tan Zhi-Jie, Li Qing-Yu, Yu Hong, Han Shen-Sheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 台式X射线系统存在通量低、非相干性等局限,在显微成像、高精度测量等应用场景中面临巨大挑战.傅里叶变换关联成像(FGI)对相干性要求较低,据此原理发展出的空间相关多角度FGI能够有效提高成像效率,适用于台式X射线系统.然而该技术仍处于理论阶段,缺乏调制X射线并形成聚焦多光束的有效器件.为此,本文提出一种多光栅调制方法,将多个子光栅按特定方位排列对X射线进行调制.单个子光栅出射的X射线为空间相干光,各子光栅之间的X射线在样品位置非相干叠加,从而形成聚焦的多角度光束,有效提高台式X射线系统的通量利用率.本文对多光栅调制屏的调制原理进行阐述,通过数值仿真分析光栅尺寸、材质、厚度等参数的影响,并针对液态靶X射线源设计多光栅调制屏,并完成加工.本文的研究能够推动台式X射线系统在高分辨衍射成像中的应用.
    The desktop X-ray system has the limitations of low flux and poor coherence. It faces great challenges in application scenarios such as microscopic imaging and high-precision measurement. Fourier-transform ghost imaging (FGI) has low requirements on the coherence of the light source. Based on this principle, multi-angle FGI based on spatial correlation can effectively improve the imaging efficiency and is suitable for desktop X-ray systems. However, this technology is still in the theoretical stage, and there is a lack of effective devices to modulate Xrays and form focused multiple beams. To this end, a multi-grating modulation method is proposed in this paper. The partially coherent radiation of the X-ray source is modulated by arranging multiple subgratings in a specific direction. The X-ray emitted by a single sub-grating is spatially coherent light, and the X-rays between the sub-gratings are incoherently superimposed at the sample position to form a focused multiangle beam. This effectively improves the flux utilization of the desktop system. The modulation principle of multi-grating is described theoretically, and the key design parameters and their selection basis are clarified. Through numerical simulation, the modulation characteristics of partially coherent X-rays in the propagation process behind the modulation screen are systematically analyzed. By optimizing the parameters such as the size, material and thickness of the sub-grating, the influence of the sub-grating on the size, uniformity and diffraction efficiency of the focused spot is studied. The results show that when the sub-grating size matches the spatial coherence size of the X-ray source, the focusing effect of the beam can be significantly improved, and a smaller and uniform focal spot can be obtained. Based on the theoretical and simulation results, a gold multi-grating modulation screen is designed and fabricated for the liquid target X-ray source. Experimental validation of the simulation and theoretical predictions will be conducted once the experimental conditions are met. Once the experimental conditions are fulfilled, the focusing performance of the modulation screen will be further verified. The design and implementation of the modulation screen provide effective support and feasible path for multi-angle diffraction imaging and related applications in miniaturized X-ray systems.
  • [1]

    Chien C C, Tseng P Y, Chen H H, Hua T E, Chen S T, Chen Y Y, Leng W H, Wang C H, Hwu Y, Yin G C, Liang K S, Chen F R, Chu Y S,Yeh H I, Yang Y C, Yang CS, Zhang G L, Je J H, Margaritondo J 2013 Biotechnol. Adv. 31 375

    [2]

    Zhang L, Tao F, Du G, Wang J, Gao R Y, Deng B, Xiao T Q 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1057 168781

    [3]

    Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H D 2018 IUCrJ 5 141

    [4]

    Foetisch A, Filella M, Watts B,Vinot LH, Bigalke M 2022 J. Hazard. Mater. 426 12780

    [5]

    Miao J, Sandberg R L, Song C 2011 IEEE J. Sel. Top. 18 399

    [6]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867

    [7]

    Pfeiffer F 2018 Nat. Photonics 12 9

    [8]

    Yuan Q X, Deng B, Guan Y, Zhang K, Liu Y J 2019 Physics 48 205

    [9]

    Withers P J, Bouman C, Carmignato S, Cnudde V, Grimaldi D,Hagen C K,Maire É,Manley M,Plessis A D,Stock S 2021 R Nat. Rev. Methods Primers. 1 18

    [10]

    Pushie M J, Sylvain N J, Hou H, Hackett M J,Kelly M E,Webb S M 2022 Metallomics 14 mfac032

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903

    [12]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901

    [13]

    Tan Z J, Yu H, Zhu R G, Lu R H, Han S S, Xue C F,Yang S M, Wu Y Q 2022 Phys. Rev. A. 106 053521

    [14]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374

    [15]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5

    [16]

    Zhao C Z, Zhang H P, Tang J, Zhao N X, Li Z L, Xiao T Q 2024 J. Synchrotron Radiat. 31

    [17]

    Li P, Chen X, Qiu X, Chen B L, Chen LX, Sun B Q 2024 Chin. Opt. Lett. 22 112701

    [18]

    Sun M J, Zhang J M 2019 Sensors 19 732

    [19]

    Li H Q, Hou W T, Ye Z Y, Yuan T Y, Shao S K, Xiong J, Sun T X, Sun X F 2023 Appl. Phys. Lett. 123

    [20]

    Wittwer F, Lyubomirskiy M, Koch F, Kahnt M, Seyrich M, Garrevoet J, David C, Schroer C G 2021 Appl. Phys. Lett. 118

    [21]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203

    [22]

    Li Q Y, Tan Z J, Wang D, Yu H, Han S S 2025 Phys. Rev. A. 111 033531

    [23]

    Zholudev S I, Terentiev S A, Polyakov S N, Martyushov S Y, Denisov V N, Kornilov N V, Polikarpov M V, Snigirev A A, Snigireva I I, Blank V D 2016 AIP Conference Proceedings p1764

    [24]

    Das A, Heirwegh C M, Gao N, Elam W T, Wade L A, Clark B C, Hurowitz J A, VanBommel S J, Jones M W M, Allwood A C X 2025 X-Ray Spectrom 54 203

    [25]

    Marshall F J, Bahr R E, Goncharov V N, Glebov V Y, Peng B, Regan S P, Sangster T C, Stoeckl C 2017 Rev. Sci. Instrum. 88

    [26]

    Ohba A, Nakano T, Onoda S, Mochizuki T, Nakamoto K 2021 Rev. Sci. Instrum. 92

    [27]

    Chen B Y, Yin G C, Lee C Y, Hsu M Y, Lin B H, Tseng S C, Li X Y, Chen H Y, Wu J X, Chang S H, Tang M T 2018 Synchrotron Radiat. News. 31 27

    [28]

    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V, David C 2017 Sci. Rep. 7 43624

    [29]

    Li T, Senesi A J, Lee B 2016 Chem. Rev. 116 11128

    [30]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203

    [31]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216

    [32]

    Zhu Z, Ellis R A, Pang S 2018 Optica 5 733

    [33]

    Born M, Wolf E 2013 Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier) pp572-577

    [34]

    Moreau P A, Toninelli E, Morris P A, Aspden R S, Gregory T, Spalding G, Boyd R W, Padgett M J 2018 Opt. Express 26 7528

    [35]

    Goodman J W. 2005 Introduction to Fourier optics (Roberts and Company publishers) pp80-82

    [36]

    Palmer C, Loewen E G 2005 Diffraction grating handbook (Newport Corporation) pp21-22

    [37]

    Harvey J E, Pfisterer R N 2019 Opt. Eng. 58 087105

    [38]

    Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J 2006 J. Synchrotron Radiat. 13 351

    [39]

    Xu C W,Zhong L J, Qin Y X, Guo H P, Tang X H 2016 Chin. J. Lasers. 43 102001(in Chinese)[许成文,钟理京,秦应雄,郭海平,唐霞辉 2016 中国激光 43 102001]

    [40]

    Xie C Q 2022 Opt. Precis. Eng. 30 1815(in Chinese)[谢常青 2022 光学精密工程 30 1815]

    [41]

    Qiu K Q, Xu X D, Liu Y, Hong Y L, Fu S J 2008 Acta Phys. Sin. 57 6329 (in Chinese)[邱克强,徐向东,刘颖,洪义麟,付绍军 2008 物理学报 57 6329]

    [42]

    Gao Y Z, Wu L J, Lu W E, Liu H Y, Xia Y, Zhao L L, Li Y L, Kong X D, Han L 2021 Acta Opt. Sin. 41 1111002(in Chinese)[高雅增,吴鹿杰,卢维尔,刘虹遥,夏洋,赵丽莉,李艳丽,孔祥东,韩立 2021 光学学报 41 1111002]

    [43]

    Yang J M, Ding Y N, Cui Q M, Cao L F, Ding Y K, Zhu P P, Zhao Y D, Yang G H, Zheng Y J, Wang Y N, Zhang W H, Ni G 2000 High Power Laser Part. Beams. 12 0(in Chinese)[杨家敏,丁耀南,崔明启,曹磊峰,丁永坤,朱佩平,赵屹东,杨国洪,郑志坚,王耀梅,张文海,黎刚 2000 强激光与粒子束 12 0]

    [44]

    Pinzek S J 2023 Ph. D. Dissertation (Munich: Technische Universität München)

    [45]

    Burwitz V, Reinsch K, Greiner J, Rauch T, Suleimanov V, Walter F W, Mennickent R E, Predehl P 2007 Adv. Space Res. 40 1294

    [46]

    Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H, Shimura T 2014 Opt. Lett. 39 4297

    [47]

    Moore A S, Guymer T M, Kline J L, Morton J, Taccetti M, Lanier N E, Bentley C, Workman J, Peterson B, Mussack K, Cowan J, Prasad R, Richardson M, Burns S, Kalantar D H, Benedetti L R, Bell P, Bradley D, Hsing W, Stevenson M 2012 Rev. Sci. Instrum. 83

    [48]

    Gross H, Henn M, Heidenreich S, Rathsfeld A, Bär M 2012 Appl. Opt. 51 7384

    [49]

    Wansleben M, Zech C, Streeck C, Weser J, Genzel C, Beckhoff B, Mainz R 2019 J. Anal. At. Spectrom. 34 1497

    [50]

    Tong X, Chen Y F, Mu C Y, Chen Q C, Zhang X Z, Zeng G, Li Y C, Xu Z J, Zhao J, Zhen X J, Mao C W, Lu H L, Tai R Z 2023 Nanotechnology 34 215301

  • [1] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究. 物理学报, doi: 10.7498/aps.72.20221745
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, doi: 10.7498/aps.71.20220976
    [3] 曹奇志, 唐金凤, 潘杨柳, 江敏, 蒋思悦, 张晶, 贾辰凌, 樊东鑫, 邓婷, 王华华, 段炼. 线性剪切空间调制快拍成像动态定标技术. 物理学报, doi: 10.7498/aps.71.20220229
    [4] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, doi: 10.7498/aps.69.20191586
    [5] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, doi: 10.7498/aps.68.20190494
    [6] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, doi: 10.7498/aps.67.20180307
    [7] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, doi: 10.7498/aps.65.124201
    [8] 牟欢, 李保权, 曹阳. 基于空间应用的透射式微型微束调制X射线源. 物理学报, doi: 10.7498/aps.65.140703
    [9] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍. 空间调制稳态微型快拍成像测偏技术研究. 物理学报, doi: 10.7498/aps.65.050702
    [10] 王东, 马迎军, 刘泉, 史祎诗. 可见光域多波长叠层衍射成像的实验研究. 物理学报, doi: 10.7498/aps.64.084203
    [11] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构. 物理学报, doi: 10.7498/aps.63.177801
    [12] 刘海岗, 许子健, 张祥志, 郭智, 邰仁忠. 中心挡板对扫描相干X射线衍射成像的影响. 物理学报, doi: 10.7498/aps.62.150702
    [13] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, doi: 10.7498/aps.62.184204
    [14] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, doi: 10.7498/aps.61.218702
    [15] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, doi: 10.7498/aps.61.018701
    [16] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究. 物理学报, doi: 10.7498/aps.60.028701
    [17] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, doi: 10.7498/aps.59.907
    [18] 简小华, 张淳民, 赵葆常. 研究干涉图处理与光谱复原的一种新方法. 物理学报, doi: 10.7498/aps.56.824
    [19] 徐政, 赵小如, 吴文彬, 孙学峰, 汪良斌, 周贵恩, 李晓光, 张裕恒. Bi2Sr2CaCu2Oy单晶调制结构的X射线衍射研究. 物理学报, doi: 10.7498/aps.45.1578
    [20] 白海洋, 陈红, 张云, 王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究. 物理学报, doi: 10.7498/aps.42.1134
计量
  • 文章访问数:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-17

/

返回文章
返回