搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1550 nm垂直腔面发射激光器的特征参量随温度的变化

马凌华 夏光琼 陈建军 吴正茂

引用本文:
Citation:

1550 nm垂直腔面发射激光器的特征参量随温度的变化

马凌华, 夏光琼, 陈建军, 吴正茂

Temperature dependence of characteristic parameters of 1550 nm vertical-cavity surface-emitting laser

Ma Ling-Hua, Xia Guang-Qiong, Chen Jian-Jun, Wu Zheng-Mao
PDF
导出引用
  • 在采用自旋反转模型分析垂直腔面发射激光器(VCSELs)动力学行为的过程中,为了正确预测VCSELs的动力学行为,需要准确给出自旋反转模型中光场衰减速率k、总反转载流子衰减速率N、线性二向色性系数a、线性双折射系数p、自旋反转速率s和线宽增强因子这6个特征参量.本文对1550 nm VCSELs在自由运行和平行光注入下的输出特性进行实验分析,获取了这6个特征参量的值,并着重研究了当激光器温度在10.0030.00 ℃范围内变化时,这6个特征参量呈现的变化趋势.研究结果表明,随着温度的逐渐升高,p整体呈现逐渐增加的趋势,a,s,N和k呈现复杂的变化趋势,而则呈现逐渐减小的趋势.
    Compared with conventional edge-emitting semiconductor lasers, vertical-cavity surface-emitting lasers (VCSELs) exhibit many advantages such as low power consumption, low threshold current, single longitudinal-mode operation, circular output beam with narrow divergence, on-wafer testing capability, high bandwidth modulation, low cost and easy large-scale integration into two-dimensional arrays, etc. VCSELs have been widely adopted in various applications such as optical communication, optical storage, parallel optical links, etc. At the same time, the rich dynamic characteristics of VCSELs have always been one of the frontier topics in the field of laser research, and many theoretically and experimentally investigated results have been reported. For theoretically investigating the dynamical characteristics of VCSELs, the spin-flip model (SFM) is one of most commonly and effectively used methods. In order to accurately predict the nonlinear dynamical performance of a 1550 nm-VCSEL, six characteristic parameters included in the rate equations of the SFM need to be given accurately. The six characteristic parameters are the decay rate of field k, the decay rate of total carrier population N, the linear anisotropies representing dichroism a, the linear anisotropies representing birefringence p, the spin-flip rate s, and the linewidth enhancement factor . In this work, through experimentally analyzing the output performances of a 1550 nm-VCSEL under free-running and parallel polarized optical injection, such six characteristic parameters included in the SFM are extracted first in the case that the temperature of the VCSEL is set to be 20.00℃. Furthermore, through gradually increasing the temperature of the 1550 nm-VCSEL from 10.00℃ to 30.00℃, the dependence of the six characteristic parameters on the temperature of the 1550 nm-VCSEL is investigated emphatically. The results show that with the increase of temperature of the 1550 nm-VCSEL, the linear anisotropy representing birefringence p behaves as an increasing trend, and the linewidth enhancement factor shows a decreasing trend. However, the other four characteristic parameters present complex varying trends with the increase of the temperature of the 1550 nm-VCSEL. The research in this paper is helpful in accurately understanding and controlling the dynamical characteristics of the VCSEL, and we hope that it can give a guidance for practical applications.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475127,61575163,61775184,31760269,61875167)资助的课题.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184, 31760269, 61875167).
    [1]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon Technol. Lett. 25 587

    [3]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)[颜森林 2015 物理学报 64 240505]

    [5]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [6]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [7]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [8]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [9]

    Lin Y Z, Xie Y Y, Ye Y C, Zhang J P, Wang S J, Liu Y, Pan G F, Zhang J L 2017 IEEE Photon. J. 9 7900512

    [10]

    Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894

    [11]

    Jiang N, Xue C P, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)[钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Lee M W, Hong Y H, Alan Shore K 2004 IEEE Photonic. Technol. Lett. 16 2392

    [14]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [15]

    Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235

    [16]

    Bacou A, Hayat A, Iakovlev V, Syrbu A, Rissons A, Mollier J C, Kapon E 2010 IEEE J. Quantum Electron. 46 313

    [17]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [18]

    Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601

    [19]

    Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B 31 2574

    [20]

    Yang J Y, Wu Z M, Liang Q, Chen J J, Zhong Z Q, Xia G Q 2016 Acta Phys. Sin. 65 124203 (in Chinese)[杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼 2016 物理学报 65 124203]

    [21]

    Chlouverakis K E, Adams M J 2004 IEEE J. Quantum Electron. 40 189

    [22]

    Khan N A, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Quantum Electron. 49 990

    [23]

    Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800207

    [24]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [25]

    van Exter M P, Willemsen M B, Woerdman J P 1998 Phys. Rev. A 58 4191

    [26]

    van Exter M P, Willemsen M B, Woerdman J P 1999 Appl. Phys. Lett. 74 2274

    [27]

    Villafranca A, Lasobras J, Lzaro J A, Garcs I 2007 IEEE J. Quantum Electron. 43 116

    [28]

    Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408

    [29]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683

    [30]

    Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253

    [31]

    Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185

    [32]

    Summers H D, Dowd P, White I H, Tan M R 1995 Photon. Technol. Lett. 7 736

  • [1]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon Technol. Lett. 25 587

    [3]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)[颜森林 2015 物理学报 64 240505]

    [5]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [6]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [7]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [8]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [9]

    Lin Y Z, Xie Y Y, Ye Y C, Zhang J P, Wang S J, Liu Y, Pan G F, Zhang J L 2017 IEEE Photon. J. 9 7900512

    [10]

    Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894

    [11]

    Jiang N, Xue C P, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)[钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Lee M W, Hong Y H, Alan Shore K 2004 IEEE Photonic. Technol. Lett. 16 2392

    [14]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [15]

    Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235

    [16]

    Bacou A, Hayat A, Iakovlev V, Syrbu A, Rissons A, Mollier J C, Kapon E 2010 IEEE J. Quantum Electron. 46 313

    [17]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [18]

    Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601

    [19]

    Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B 31 2574

    [20]

    Yang J Y, Wu Z M, Liang Q, Chen J J, Zhong Z Q, Xia G Q 2016 Acta Phys. Sin. 65 124203 (in Chinese)[杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼 2016 物理学报 65 124203]

    [21]

    Chlouverakis K E, Adams M J 2004 IEEE J. Quantum Electron. 40 189

    [22]

    Khan N A, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Quantum Electron. 49 990

    [23]

    Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800207

    [24]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [25]

    van Exter M P, Willemsen M B, Woerdman J P 1998 Phys. Rev. A 58 4191

    [26]

    van Exter M P, Willemsen M B, Woerdman J P 1999 Appl. Phys. Lett. 74 2274

    [27]

    Villafranca A, Lasobras J, Lzaro J A, Garcs I 2007 IEEE J. Quantum Electron. 43 116

    [28]

    Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408

    [29]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683

    [30]

    Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253

    [31]

    Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185

    [32]

    Summers H D, Dowd P, White I H, Tan M R 1995 Photon. Technol. Lett. 7 736

  • [1] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [2] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [3] 潘冠中, 荀孟, 赵壮壮, 孙昀, 蒋文静, 周静涛, 吴德馨. 高功率密度多结级联905 nm垂直腔面发射激光器. 物理学报, 2022, 71(20): 204203. doi: 10.7498/aps.71.20220888
    [4] 张建伟, 张星, 周寅利, 李惠, 王岩冰, 陈志明, 徐嘉琪, 宁永强, 王立军. 1550 nm毫瓦级单横模垂直腔面发射半导体激光器. 物理学报, 2022, 71(6): 064204. doi: 10.7498/aps.71.20212132
    [5] 赵壮壮, 荀孟, 潘冠中, 孙昀, 周静涛, 王大海, 吴德馨. 高功率转换效率905 nm垂直腔面发射激光器的设计与制备. 物理学报, 2021, 70(11): 114202. doi: 10.7498/aps.70.20210043
    [6] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [7] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [8] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [9] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性. 物理学报, 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [10] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [11] 杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼. 1550nm垂直腔面发射激光器自旋反转模型中关键参量数值的实验确定. 物理学报, 2016, 65(12): 124203. doi: 10.7498/aps.65.124203
    [12] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [13] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [14] 赵艳梅, 夏光琼, 吴加贵, 吴正茂. 基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究. 物理学报, 2013, 62(21): 214206. doi: 10.7498/aps.62.214206
    [15] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [16] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [17] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [18] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [19] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [20] 陈 敏, 郭 霞, 关宝璐, 邓 军, 董立闽, 沈光地. AlInGaAs/AlGaAs垂直腔面发射激光器温度特性的对比研究. 物理学报, 2006, 55(11): 5842-5847. doi: 10.7498/aps.55.5842
计量
  • 文章访问数:  6364
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-07-14
  • 刊出日期:  2018-11-05

/

返回文章
返回