搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1550nm垂直腔面发射激光器自旋反转模型中关键参量数值的实验确定

杨继云 吴正茂 梁卿 陈建军 钟祝强 夏光琼

引用本文:
Citation:

1550nm垂直腔面发射激光器自旋反转模型中关键参量数值的实验确定

杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼

Experimental determination of key parameters in the spin-flip model of 1550 nm vertical-cavity surface-emitting laser

Yang Ji-Yun, Wu Zheng-Mao, Liang Qing, Chen Jian-Jun, Zhong Zhu-Qiang, Xia Guang-Qiong
PDF
导出引用
  • 自旋反转模型是目前用于分析垂直腔面发射激光器(VCSELs)非线性动力学特性最常用的理论模型, 因此该模型中相关参量的取值至关重要. 本文基于对自由运行和平行光注入时1550 nm垂直腔面发射激光器(1550 nm-VCSELs)输出特性的实验测量结果, 对描述1550 nm-VCSELs 特性的SFM中光场衰减速率k、总载流子衰减速率N、线宽增强因子, 有源介质双折射速率p、自旋反转速率s、有源介质线性色散速率a 等关键参量进行了估值. 在此基础上, 利用所测得的这些关键参量的数值, 仿真了1550 nm-VCSELs的相关输出特性, 所得结果与实验结果符合.
    Spin-flip model (SFM) is a mostly used approach to analyzing the nonlinear dynamics of vertical-cavity surface-emitting laser (VCSEL), and therefore the value selections of some key parameters in this model are crucial. In this work, based on experimentally measured dynamical characteristics of a 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL) under free running and parallel optical injection, some key parameters (field decay rate k, total carrier decay rate N, linewidth enhancement factor , active medium birefringence rate p, spin relaxation rate s, and active medium linear dispersion rate a) are estimated. Through experimentally measuring the noise spectrum of the laser, the relaxation oscillation frequency and the damping rate of the relaxation oscillations are calculated, and the photon lifetime can be preliminary estimated. After further amending the photon lifetime by considering the effect of the gain saturation on the damping rate of the relaxation oscillations, the value of k is determined. Based on the function relation between the laser relaxation oscillation frequency and the electrical pumping, the value of N is obtained. By experimentally acquiring the dynamical distribution mapping of the laser under parallel optical injection, the minimum Hopf bifurcation point of the Hopf bifurcation curve can be found, and then the value of is roughly estimated. According to the frequency difference between the two polarization components of the laser in the measured optical spectrum, the value of p can be calculated. The value of s is obtained by using the relationship between s and p. On the basis of the above determined parameter values, the value of a can be specified by numerically simulating the optical spectrum of the laser and comparing with experimentally obtained results. Moreover, by comparing the experimentally measured dynamical mapping of optical injection VCSEL with corresponding dynamical mapping simulated on the basis of the above mentioned parameters, the value of is rectified. Finally, further simulated results agree with relevant experimental observations.
      通信作者: 夏光琼, gqxia@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275116, 61475127, 61575163)和重庆市研究生科研创新项目(批准号: CYB14054)资助的课题.
      Corresponding author: Xia Guang-Qiong, gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275116, 61475127, 61575163) and the Postgraduate Research and Innovation Project of Chongqing Municipality, China (Grant No. CYB14054).
    [1]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [2]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [3]

    Panajotov K, Berghmans F, Peeters M, Verschaffelt G, Danckaert J, Veretennicoff I, Thienpont H 1999 IEEE Photonic. Tech. L. 11 985

    [4]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [5]

    Wang W J, Li C, Zhou H Y, Wu H, Luan X X, Shi L, Guo X 2015 Chin. Phys. B 24 024209

    [6]

    Lee M W, Hong Y H, Shore K A 2004 IEEE Photonic. Tech. L. 16 2392

    [7]

    Kasukawa A 2012 IEEE Photonics J. 4 642

    [8]

    Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894

    [9]

    Sciamanna M, Panajotov K 2006 Phys. Rev. A 73 023811

    [10]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [11]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [12]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409

    [13]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese) [刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209]

    [14]

    Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210

    [15]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [16]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [17]

    Prez P, Valle A, Pesquera L, Quirce A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700408

    [18]

    Salvide M F, Torre M S, Henning I D, Adams M J, Hurtado A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800309

    [19]

    Adams M J, Alexandropoulos D 2009 IEEE J. Quantum Electron. 45 744

    [20]

    Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601

    [21]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 160

    [22]

    Agrawal G P, Dutta N K 1993 Semiconductor Lasers (2nd Ed.) (Boston: Kluwer Academic Publishers) pp261-262

    [23]

    Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408

    [24]

    Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235

    [25]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683

    [26]

    Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B: Opt. Phys. 31 2574

    [27]

    Homayounfar A, Adams M J 2007 Opt. Express 15 10504

    [28]

    Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185

    [29]

    Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253

    [30]

    Chuang C F, Liao Y H, Lin C H, Chen S Y, Grillot F, Lin F Y 2014 Opt. Express 22 5651

    [31]

    Homayounfar A, Adams M J 2007 Opt. Commun. 269 119

    [32]

    Liu B Z, Peng J H 2004 Nonlinear Dynamics (Beijing: Higher Education Press) p76 (in Chinese) [刘秉正, 彭建华 2004 非线性动力学(北京: 高等教育出版社) 第76页]

  • [1]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [2]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [3]

    Panajotov K, Berghmans F, Peeters M, Verschaffelt G, Danckaert J, Veretennicoff I, Thienpont H 1999 IEEE Photonic. Tech. L. 11 985

    [4]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [5]

    Wang W J, Li C, Zhou H Y, Wu H, Luan X X, Shi L, Guo X 2015 Chin. Phys. B 24 024209

    [6]

    Lee M W, Hong Y H, Shore K A 2004 IEEE Photonic. Tech. L. 16 2392

    [7]

    Kasukawa A 2012 IEEE Photonics J. 4 642

    [8]

    Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894

    [9]

    Sciamanna M, Panajotov K 2006 Phys. Rev. A 73 023811

    [10]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [11]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [12]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409

    [13]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese) [刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209]

    [14]

    Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210

    [15]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [16]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [17]

    Prez P, Valle A, Pesquera L, Quirce A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700408

    [18]

    Salvide M F, Torre M S, Henning I D, Adams M J, Hurtado A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800309

    [19]

    Adams M J, Alexandropoulos D 2009 IEEE J. Quantum Electron. 45 744

    [20]

    Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601

    [21]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 160

    [22]

    Agrawal G P, Dutta N K 1993 Semiconductor Lasers (2nd Ed.) (Boston: Kluwer Academic Publishers) pp261-262

    [23]

    Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408

    [24]

    Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235

    [25]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683

    [26]

    Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B: Opt. Phys. 31 2574

    [27]

    Homayounfar A, Adams M J 2007 Opt. Express 15 10504

    [28]

    Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185

    [29]

    Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253

    [30]

    Chuang C F, Liao Y H, Lin C H, Chen S Y, Grillot F, Lin F Y 2014 Opt. Express 22 5651

    [31]

    Homayounfar A, Adams M J 2007 Opt. Commun. 269 119

    [32]

    Liu B Z, Peng J H 2004 Nonlinear Dynamics (Beijing: Higher Education Press) p76 (in Chinese) [刘秉正, 彭建华 2004 非线性动力学(北京: 高等教育出版社) 第76页]

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] 张建伟, 张星, 周寅利, 李惠, 王岩冰, 陈志明, 徐嘉琪, 宁永强, 王立军. 1550 nm毫瓦级单横模垂直腔面发射半导体激光器. 物理学报, 2022, 71(6): 064204. doi: 10.7498/aps.71.20212132
    [3] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [4] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [5] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [6] 马凌华, 夏光琼, 陈建军, 吴正茂. 1550 nm垂直腔面发射激光器的特征参量随温度的变化. 物理学报, 2018, 67(21): 214203. doi: 10.7498/aps.67.20180572
    [7] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [8] 王小发, 吴正茂, 夏光琼. 光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关. 物理学报, 2016, 65(2): 024204. doi: 10.7498/aps.65.024204
    [9] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性. 物理学报, 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [10] 孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼. 基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究. 物理学报, 2016, 65(1): 014207. doi: 10.7498/aps.65.014207
    [11] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [12] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [13] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [14] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [15] 陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼. 基于双光注入锁定1550 nm垂直腔表面发射半导体激光器产生可调谐毫米波. 物理学报, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [16] 马雅男, 罗斌, 潘炜, 闫连山, 邹喜华, 易安林, 叶佳, 温坤华, 郑狄. 垂直腔面发射激光器的饱和效应对慢光延时影响的研究. 物理学报, 2012, 61(1): 014215. doi: 10.7498/aps.61.014215
    [17] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [18] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [19] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [20] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
计量
  • 文章访问数:  6368
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-28
  • 修回日期:  2016-02-26
  • 刊出日期:  2016-06-05

/

返回文章
返回