-
基于自旋反转模型, 对双光注入下1550 nm 垂直腔表面发射半导体激光器(1550 nm-VCSEL)的非线性动力学行为进行了理论分析和数值仿真研究. 结果表明: 当一个中心波长位于1550 nm 的副VCSEL(S-VCSEL)同时受到来自两个主VCSELs (M-VCSELs)的光注入时, 在适当的注入条件下, S-VCSEL可处于双光注入锁定态. 此时, S-VCSEL中的两偏振模式均呈现频率为两注入光频率之差的周期性振荡, 输出的光谱仅包含两个主频率部分, 即光谱具有单边带特征. 因此, 基于双光注入下S-VCSEL的周期性振荡可以获得两个相互正交的光毫米波. 通过调节两个M-VCSELs之间的频率差异可使毫米波频率在较大范围内连续可调, 通过调节系统参量可以控制毫米波功率以及调制深度.
-
关键词:
- 垂直腔表面发射激光器 /
- 双光注入 /
- 毫米波 /
- 调制深度
Based on the spin-flip model, the nonlinear dynamics of a 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL) subject to dual-beam optically injection is investigated theoretically. The results show that a slave 1550 nm-VCSEL (S-VCSEL) under the injection of dual-beam output from two master VCSELs (M-VCSELs) can be driven to enter into an injection locking state under suitable injection parameters. In this case, the outputs of both X and Y polarization modes of the S-VCSEL exhibit periodic oscillation whose frequency is equal to the frequency detuning between the two M-VCSELs, and its optical spectrum contains only two main frequency components and possesses a single sideband spectrum structure. As a result, two mutually orthogonal optical millimeter-waves can be obtained based on the periodic oscillation in a VCSEL subject to dual-beam optically injected locking. Through adjusting the frequency detuning between the two M-VCSELs, the frequency of the millimeter-wave can be tuned continuously in a large range, while the power and modulation depth can also be controlled by adjusting the system parameters.-
Keywords:
- vertical-cavity surface-emitting laser /
- dual-beam injection /
- millimeter wave /
- modulation depth
[1] Cooper A J 1990 Electron. Lett. 26 2054
[2] Capmany J, Novak D 2007 Nature Photon. 1 319
[3] Choi S T, Yang K S, Nishi S, Nishi S, Shimizu A, Tokuda K, Kim Y H 2006 IEEE Trans. Microwave Theory Tech. 54 1953
[4] Jiang T, Huang D X, Zhang X L, Zhang Q, Wang J Y 2008 Acta Opt. Sin. 28 36 (in Chinese) [江涛, 黄德修, 张新亮, 张强, 王俊毅 2008光学学报 28 36]
[5] Yao J P 2009 J. Lightwave Technol. 27 314
[6] Zhang G Z, Zhu N H, Man J W, Ke J H, Zhang B H, Han W, Chen W, Yuan H Q, Wang X, Xie L, Zhao L J, Wang W 2009 IEEE Photon. Technol. Lett. 21 1045
[7] Genest J, Chamberland M, Tremblay P, Têtu M 1997 IEEE J. Quantum Electron. 33 989
[8] Johansson L A, Seeds A J 2000 IEEE Photon. Technol. Lett. 12 690
[9] Zhao Y C, Wu Z M, Xia G Q 2009 Optoelectron. Adv. Mater. Rap. Commun. 3 791
[10] Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 J. Lightwave Technol. 21 1504
[11] Liu W S, Jiang M, Chen D, He S L 2009 J. Lightwave Technol. 27 4455
[12] Ryu H S, Seo Y K, Choi W Y 2004 IEEE Photon. Technol. Lett. 16 1942
[13] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[14] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]
[15] Chen X H, Lin X D, Wu Z M, Fan L, Cao T, Xia G Q 2012 Acta Phys. Sin. 61 094209 (in Chinese) [陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼 2012物理学报 61 094209]
[16] Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644
[17] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[18] Seyab R A, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
-
[1] Cooper A J 1990 Electron. Lett. 26 2054
[2] Capmany J, Novak D 2007 Nature Photon. 1 319
[3] Choi S T, Yang K S, Nishi S, Nishi S, Shimizu A, Tokuda K, Kim Y H 2006 IEEE Trans. Microwave Theory Tech. 54 1953
[4] Jiang T, Huang D X, Zhang X L, Zhang Q, Wang J Y 2008 Acta Opt. Sin. 28 36 (in Chinese) [江涛, 黄德修, 张新亮, 张强, 王俊毅 2008光学学报 28 36]
[5] Yao J P 2009 J. Lightwave Technol. 27 314
[6] Zhang G Z, Zhu N H, Man J W, Ke J H, Zhang B H, Han W, Chen W, Yuan H Q, Wang X, Xie L, Zhao L J, Wang W 2009 IEEE Photon. Technol. Lett. 21 1045
[7] Genest J, Chamberland M, Tremblay P, Têtu M 1997 IEEE J. Quantum Electron. 33 989
[8] Johansson L A, Seeds A J 2000 IEEE Photon. Technol. Lett. 12 690
[9] Zhao Y C, Wu Z M, Xia G Q 2009 Optoelectron. Adv. Mater. Rap. Commun. 3 791
[10] Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 J. Lightwave Technol. 21 1504
[11] Liu W S, Jiang M, Chen D, He S L 2009 J. Lightwave Technol. 27 4455
[12] Ryu H S, Seo Y K, Choi W Y 2004 IEEE Photon. Technol. Lett. 16 1942
[13] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[14] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]
[15] Chen X H, Lin X D, Wu Z M, Fan L, Cao T, Xia G Q 2012 Acta Phys. Sin. 61 094209 (in Chinese) [陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼 2012物理学报 61 094209]
[16] Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644
[17] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[18] Seyab R A, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
计量
- 文章访问数: 6712
- PDF下载量: 614
- 被引次数: 0