搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波

陈兴华 林晓东 吴正茂 樊利 曹体 夏光琼

引用本文:
Citation:

基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波

陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼

Optical generation of high-quality millimeter-wave based on an optically injected VCSEL subject to polarization-rotated external optical feedback

Chen Xing-Hua, Lin Xiao-Dong, Wu Zheng-Mao, Fan Li, Cao Ti, Xia Guang-Qiong
PDF
导出引用
  • 本文提出一种基于偏振旋转光反馈下的外光注入垂直腔 表面发射激光器(VCSEL)产生高性能毫米波的方案, 并利用描述外部扰动下VCSEL动态特性的自旋反转模型(SFM), 对所产生的毫米波的特性进行了数值研究. 研究结果表明: 一个受到主VCSEL(M-VCSEL)光注入的副VCSEL(S-VCSEL)在一定条件下可以产生单周期(P1)振荡, 即在光波上调制了一个微波信号. 通过调节外光注入强度i以及S-VCSEL与M-VCSEL之间频率失谐, 可以获得频率在3060 GHz范围内连续可调的毫米波信号. 在外光注入VCSEL中引入偏振旋转光反馈, 通过选取合适的反馈强度f以及反馈延迟时间, 产生的毫米波信号的线宽可以得到明显窄化. 对于光注入S-VCSEL所产生的线宽为5.509 MHz的毫米波, 在引入偏振旋转光反馈后, 毫米波线宽可以降低到230.2 kHz. 本文的研究对高速光载无线(RoF)系统中优质毫米波信号的获取具有一定的参考意义.
    A scheme of optical generation of high-quality millimeter-wave based on the optically injected vertical-cavity- surface-emitting laser (VCSEL) subject to polarization-rotated optical feedback is proposed in this paper. Based on the spin-flip model (SFM), wich external disturbances taken into account, the performances of the millimeter-wave generated by this scheme are numerically investigated. The results show that under suitable operation conditions, a slave VCSEL (S-VCSEL) injected by a master VCSEL (M-VCSEL) will operate in a period-one (P1) oscillation state and the output optical intensity of S-VCSEL looks like being modulated by a microwave signal. By adjusting the injection strength iand the frequency detuning between S-VCSEL and M-VCSEL, a millimeter-wave, whose frequency can be continuously adjusted in a large range from 30 GHz to 60 GHz, is obtained. After introducing polarization-rotated optical feedback, the linewidth of millimeter-wave can be obviously narrowed by adjusting the feedback strength i and the feedback delay time . For a millimeter-wave with a linewidth of 5.509 MHz, generated by the optically injected VCSEL, its linewidth can be reduced to 230.2 kHz under optimum feedback parameters. The results obtained in this paper are helpful for acquiring high-quality millimeter-wave used in high speed Radio-over-Fiber (RoF) system.
    • 基金项目: 国家自然科学基金(批准号: 60978003, 61078003, 61178011), 重庆市自然科学基金(批准号: CSTC2011jjA40035, CSTC2012jjB40011), 西南大学中央高校基本科研业务费专项资金(批准号: XDJK2010C019, XDJK2009B010)和毫米波国家重点实验室开放课题(批准号: K201109)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978003, 61078003, 61178011), the Natural Science Foundation of Chongqing City (Grant Nos. CSTC2011jjA40035, CSTC2012jjB40011), the Special Funds of Southwest University for Basic Scientific Research in Central Universities (Grant No. XDJK2010C019, XDJK2009B010), and the Open Fund of the State Key Lab of Millimeter Waves of China (Grant No. 201109).
    [1]

    Cooper A J 1990 Electron. Lett. 26 2054

    [2]

    Capmany J, Novak D 2007 Nature Photon. 1 319

    [3]

    Kim A, Joo Y H, Kim Y 2004 IEEE Trans. Consumer Electron. 50 517

    [4]

    Guennec Y L, Maury G, Yao J P, Cabon B 2006 J. Lightwave Technol. 24 1277

    [5]

    Davide D, Giovanni T, Pier F, Luigi T 2011 Optics Commun. 284 2751

    [6]

    Lin C T, Chen J, Shih P T 2010 J. Lightwave Technol. 28 2296

    [7]

    Kjebon O, Schatz R, Lourdudoss S, Nilsson S, StAlnacke B, Backbom L 1997 Electron. Lett. 33 488

    [8]

    Novak D, Ahmed Z, Waterhouse R B, Tucker R S 1995 IEEE Trans. Microwave Theory Tech. 43 2257

    [9]

    Derickson D J, Helkey R J, Mar A, Wasserbauer J G, Wey Y G, Bowers J E 1992 IEEE MTT-S Int. Microw. Symp. Dig. 2 753

    [10]

    Genest J, Chamberland M, Tremblay P, Tetu M 1997 IEEE J. Quantum Electron. 33 989

    [11]

    Johansson L A, Seeds A J 2003 J. Lightwave Technol. 21 511

    [12]

    Wake D, Lima C R, Davies P A 1995 IEEE Trans. Microwave Theory Tech. 43 2270

    [13]

    Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83

    [14]

    Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476

    [15]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [16]

    Simpson T B 1999 Opt. Commun. 170 93

    [17]

    Kaszubowska A, Anandarajah P, Barry L P 2002 IEEE Photon. Technol. Lett. 14 233

    [18]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [19]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]

    [20]

    Xie H Y, Jin D Y, He L J, Zhang W, Wang L, Zhang W R, Wang W 2008 Acta Phys. Sin. 57 4558 (in Chinense) [谢红云, 金冬月, 何莉剑, 张蔚, 王路, 张万荣, 王圩 2008 物理学报 57 4558]

    [21]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [22]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J Quantum Electron. 33 765

    [23]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [24]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [25]

    Yang B X, Xia G Q, Lin X D, Wu Z M 2009 Acta Phys. Sin. 58 1480 (in Chinese) [杨炳星, 夏光琼, 林晓东, 吴正茂 2009 物理学报 58 1480]

    [26]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [27]

    Leng Z M, Xia G Q, Wu Z M 2009 Optoelectron. & Adv. Mater. - Rap. Commun. 3 644

    [28]

    Chan S C, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 1025

    [29]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. 44 1728

    [30]

    Simpson T B, Liu J M, Gavielides A 1996 IEEE J Quantum Electron. 32 1456

    [31]

    Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Topics Quantum Electron. 10 974

  • [1]

    Cooper A J 1990 Electron. Lett. 26 2054

    [2]

    Capmany J, Novak D 2007 Nature Photon. 1 319

    [3]

    Kim A, Joo Y H, Kim Y 2004 IEEE Trans. Consumer Electron. 50 517

    [4]

    Guennec Y L, Maury G, Yao J P, Cabon B 2006 J. Lightwave Technol. 24 1277

    [5]

    Davide D, Giovanni T, Pier F, Luigi T 2011 Optics Commun. 284 2751

    [6]

    Lin C T, Chen J, Shih P T 2010 J. Lightwave Technol. 28 2296

    [7]

    Kjebon O, Schatz R, Lourdudoss S, Nilsson S, StAlnacke B, Backbom L 1997 Electron. Lett. 33 488

    [8]

    Novak D, Ahmed Z, Waterhouse R B, Tucker R S 1995 IEEE Trans. Microwave Theory Tech. 43 2257

    [9]

    Derickson D J, Helkey R J, Mar A, Wasserbauer J G, Wey Y G, Bowers J E 1992 IEEE MTT-S Int. Microw. Symp. Dig. 2 753

    [10]

    Genest J, Chamberland M, Tremblay P, Tetu M 1997 IEEE J. Quantum Electron. 33 989

    [11]

    Johansson L A, Seeds A J 2003 J. Lightwave Technol. 21 511

    [12]

    Wake D, Lima C R, Davies P A 1995 IEEE Trans. Microwave Theory Tech. 43 2270

    [13]

    Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83

    [14]

    Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476

    [15]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [16]

    Simpson T B 1999 Opt. Commun. 170 93

    [17]

    Kaszubowska A, Anandarajah P, Barry L P 2002 IEEE Photon. Technol. Lett. 14 233

    [18]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [19]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]

    [20]

    Xie H Y, Jin D Y, He L J, Zhang W, Wang L, Zhang W R, Wang W 2008 Acta Phys. Sin. 57 4558 (in Chinense) [谢红云, 金冬月, 何莉剑, 张蔚, 王路, 张万荣, 王圩 2008 物理学报 57 4558]

    [21]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [22]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J Quantum Electron. 33 765

    [23]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [24]

    Wang X F, Xia G Q, Wu Z M 2009 Acta Phys. Sin. 58 4669 (in Chinese) [王小发, 夏光琼, 吴正茂 2009 物理学报 58 4669]

    [25]

    Yang B X, Xia G Q, Lin X D, Wu Z M 2009 Acta Phys. Sin. 58 1480 (in Chinese) [杨炳星, 夏光琼, 林晓东, 吴正茂 2009 物理学报 58 1480]

    [26]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [27]

    Leng Z M, Xia G Q, Wu Z M 2009 Optoelectron. & Adv. Mater. - Rap. Commun. 3 644

    [28]

    Chan S C, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 1025

    [29]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. 44 1728

    [30]

    Simpson T B, Liu J M, Gavielides A 1996 IEEE J Quantum Electron. 32 1456

    [31]

    Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Topics Quantum Electron. 10 974

  • [1] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [2] 王小发, 吴正茂, 夏光琼. 光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关. 物理学报, 2016, 65(2): 024204. doi: 10.7498/aps.65.024204
    [3] 张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏. 基于波长调制光谱技术的线宽测量理论及其应用研究. 物理学报, 2015, 64(5): 053301. doi: 10.7498/aps.64.053301
    [4] 邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳. 光纤激光经过模清洁器后的强度噪声分析. 物理学报, 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [5] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究 . 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [6] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究. 物理学报, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [7] 陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼. 基于双光注入锁定1550 nm垂直腔表面发射半导体激光器产生可调谐毫米波. 物理学报, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [8] 高嵩, 裴丽, 宁提纲, 祁春慧, 刘观辉, 李晶. 光自差法生成微波/毫米波技术中偏振失谐研究. 物理学报, 2012, 61(12): 124204. doi: 10.7498/aps.61.124204
    [9] 裴丽, 刘观辉, 宁提纲, 高嵩, 李晶, 张义军. 基于偏振稳定双波长保偏光纤光栅激光器的可调谐微波/毫米波产生技术. 物理学报, 2012, 61(6): 064203. doi: 10.7498/aps.61.064203
    [10] 林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼. 基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化 . 物理学报, 2012, 61(19): 194212. doi: 10.7498/aps.61.194212
    [11] 刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军. 基于新型偏振稳定毫米波发生器的光载无线通信下行链路. 物理学报, 2012, 61(9): 094205. doi: 10.7498/aps.61.094205
    [12] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 鲁兴海, 宣丽. 基于透射式液晶/聚合物光栅的分布反馈式激光器的研究. 物理学报, 2011, 60(5): 056102. doi: 10.7498/aps.60.056102
    [13] 徐捷. 适用于毫米波带状束行波放大器的光子晶体栅慢波电路研究. 物理学报, 2011, 60(1): 018402. doi: 10.7498/aps.60.018402
    [14] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究. 物理学报, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [15] 何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥. 脊加载曲折波导行波管注波互作用的线性理论研究. 物理学报, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [16] 师应龙, 董晨钟. C Ⅱ离子1s内壳层激发态的结构和衰变特性的理论研究. 物理学报, 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [17] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [18] 刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂. 强光注入提高光反馈VCSELs混沌载波基频. 物理学报, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [19] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [20] 彭洪尚, 宋宏伟, 陈宝玖, 王绩伟, 吕少哲, 孔祥贵, 李殿超. 变温下Y2O3∶Eu3+纳米晶的荧光光谱和动力学过程. 物理学报, 2002, 51(12): 2875-2880. doi: 10.7498/aps.51.2875
计量
  • 文章访问数:  5038
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-20
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波

  • 1. 西南大学物理科学与技术学院, 重庆 400715;
  • 2. 东南大学毫米波国家重点实验室, 南京 210096
    基金项目: 国家自然科学基金(批准号: 60978003, 61078003, 61178011), 重庆市自然科学基金(批准号: CSTC2011jjA40035, CSTC2012jjB40011), 西南大学中央高校基本科研业务费专项资金(批准号: XDJK2010C019, XDJK2009B010)和毫米波国家重点实验室开放课题(批准号: K201109)资助的课题.

摘要: 本文提出一种基于偏振旋转光反馈下的外光注入垂直腔 表面发射激光器(VCSEL)产生高性能毫米波的方案, 并利用描述外部扰动下VCSEL动态特性的自旋反转模型(SFM), 对所产生的毫米波的特性进行了数值研究. 研究结果表明: 一个受到主VCSEL(M-VCSEL)光注入的副VCSEL(S-VCSEL)在一定条件下可以产生单周期(P1)振荡, 即在光波上调制了一个微波信号. 通过调节外光注入强度i以及S-VCSEL与M-VCSEL之间频率失谐, 可以获得频率在3060 GHz范围内连续可调的毫米波信号. 在外光注入VCSEL中引入偏振旋转光反馈, 通过选取合适的反馈强度f以及反馈延迟时间, 产生的毫米波信号的线宽可以得到明显窄化. 对于光注入S-VCSEL所产生的线宽为5.509 MHz的毫米波, 在引入偏振旋转光反馈后, 毫米波线宽可以降低到230.2 kHz. 本文的研究对高速光载无线(RoF)系统中优质毫米波信号的获取具有一定的参考意义.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回