搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器

王杨婧 谢拥军 雷振亚

引用本文:
Citation:

用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器

王杨婧, 谢拥军, 雷振亚

Novel flux concentrator with a single CSRR surrounded by a resonator for radio frequency superconducting quantum interference device

Wang Yang-Jing, Xie Yong-Jun, Lei Zhen-Ya
PDF
导出引用
  • 文提出了一种新型磁通聚焦器和谐振器. 磁通聚焦器引入了单互补开环谐振器结构 (单CSRR); 谐振器则采用环绕着绕磁通聚焦器的发夹型3阶阶梯阻抗谐振器 (SIR). 采用ANSYS HFSSv.11高频结构仿真软件对提出的磁通聚焦器和谐振器进行了仿真, 并对单CSRR进行了理论分析. 仿真和理论分析表明: 单CSRR的引入, 提高了磁通聚焦器的聚磁效果, 改善了磁通聚焦器与RF SQUID垫圈的耦合(耦合系数ksc为引入单CSRR前的2倍), 并且有效面积增大到1.227 mm2.
    A novel flux concentrator surrounded by a resonator is proposed in this paper. A complementary single split ring resonator (single CSRR) is introduced for the flux concentrator, while the resonator surrounding the flux concentrator employs a third-order stepped-impedance hairpin resonator (SIR). High frequency structure simulation software ANSYS HFSSv.11 is used to simulate the proposed flux concentrator and resonator. Moreover, the single CSRR is analyzed theoretically. Simulation and theoretical results shows that the novel flux concentrator surrounded by a resonator introduces a single CSRR, which improves the flux focus effect of the concentrator significantly, and so enhances the performance of coupling between the RF SQUID and the flux concentrator (the coupling coefficient ksc is improved 2 times) and increases the effective area to 1.227 mm2.
    • 基金项目: 通信系统信息控制技术国家级重点实验室基金(批准号: 9140C1304021003)资助的课题.
    • Funds: Project supported by the Foundation of the State Key Laboratory of Information Control Technology for Communication System, China (Grant No. 9140C1304021003).
    [1]

    Clarke J, Braginski A I 2004 The SQUID Handbook (Volume I) p12

    [2]

    Zhang Y, Zander W, Schubert J 1997 Appl. Phys. Lett. 71 704

    [3]

    Zhang Y, Wolters N, Zeng X H 1998 IEEE Trans. Appl. Supercond. 6 385

    [4]

    Yi H R, Zhang Y, Bousack H, Braginski A I 1999 IEEE Trans. Appl. Supercond. 9 4400

    [5]

    Xie F X, Yang T, Ma P, Liu L Y, Wang F R, Wang S Z, Wang S G, Dai Y D 2002 CN Patent CN 1352469 [2002-06-05] (in Chinese) [谢飞翔, 杨涛, 马平, 聂瑞娟, 刘乐园, 王福仁, 王守证, 王世光, 戴远东 2002 中国专利CN1352469 [2002-06-05]]

    [6]

    Mao H Y, Wang F R, Meng S C, Mao B, LI Z Z, Nie R J, Liu X Y, Dai Y D 2006 Front. Phys. China 3 301

    [7]

    Zhang Y, Schubert J, Wolters N, Banzet M, Zander W, Krause H J 2002 Physica C 372-376 282

    [8]

    Gao J, Yang T, Ma P, Dai Y D 2010 Acta. Phys. Sin. 59 5044 (in Chinese) [高吉, 杨涛, 马平, 戴远东 2010 物理学报 59 5044]

    [9]

    Koichiro Kobayashi, Yoshinori Uchikawa 2003 IEEE Trans. Magnetic 39 3378

    [10]

    Bick M, Panaitov G, Wolters N, Zhang Y, Bousack H, Braginski A I 1999 IEEE Trans. Appl. Supercond. 9 3780

    [11]

    Jenks W G, Sadeghi S S H, Wikswo J P 1997 Phys.D: Appl.Phys 30 293

    [12]

    Ma P, Dai Y, Gan Z, Yang X, Hua J 2009 Vacuum Electronics 1 33 (in Chinese) [马平, 戴远东, 甘子钊, 杨小牛, 华军 2009 真空电子技术 1 33]

    [13]

    Yi H R, Zhang Y, Schubert J, Zander W, Zeng X H, Klein N 2000 J. Appl. Phys. 88 5966

    [14]

    Meng S C, Deng P, Nie R J, Xie F X, Ma P, Liu L Y, Wang S Z, Dai Y D 2002 Chin. J. Low Temp. Phys. 24 179 (in Chinese) [孟树超, 邓鹏, 聂瑞娟, 谢飞翔, 马平, 刘乐原, 王守证, 戴远东 2002 低温物理学报 24 179]

    [15]

    Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta. Phys. Sin. 52 2580 (in Chinese) [刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 物理学报 52 2580]

    [16]

    Xie Y J, Liu Y, Li L, Ding H Q, Lei Z Y 2009 HFSS Principle and Engineering Application (I) (Beijing: Science Press) p58 (in Chinese) [谢拥军, 刘莹, 李磊, 丁海强, 雷振亚 2009 HFSS原理与工程应用 (第一版) (北京: 科学出版社) 第58页]

    [17]

    Tang M C, Xiao S, Deng T, Wang D, Guan J, Wang B, Ge G D 2011 IEEE Trans. AP. 9 1372

    [18]

    Zhang Y 2001 IEEE Trans. Appl. Supercond 11 1038

  • [1]

    Clarke J, Braginski A I 2004 The SQUID Handbook (Volume I) p12

    [2]

    Zhang Y, Zander W, Schubert J 1997 Appl. Phys. Lett. 71 704

    [3]

    Zhang Y, Wolters N, Zeng X H 1998 IEEE Trans. Appl. Supercond. 6 385

    [4]

    Yi H R, Zhang Y, Bousack H, Braginski A I 1999 IEEE Trans. Appl. Supercond. 9 4400

    [5]

    Xie F X, Yang T, Ma P, Liu L Y, Wang F R, Wang S Z, Wang S G, Dai Y D 2002 CN Patent CN 1352469 [2002-06-05] (in Chinese) [谢飞翔, 杨涛, 马平, 聂瑞娟, 刘乐园, 王福仁, 王守证, 王世光, 戴远东 2002 中国专利CN1352469 [2002-06-05]]

    [6]

    Mao H Y, Wang F R, Meng S C, Mao B, LI Z Z, Nie R J, Liu X Y, Dai Y D 2006 Front. Phys. China 3 301

    [7]

    Zhang Y, Schubert J, Wolters N, Banzet M, Zander W, Krause H J 2002 Physica C 372-376 282

    [8]

    Gao J, Yang T, Ma P, Dai Y D 2010 Acta. Phys. Sin. 59 5044 (in Chinese) [高吉, 杨涛, 马平, 戴远东 2010 物理学报 59 5044]

    [9]

    Koichiro Kobayashi, Yoshinori Uchikawa 2003 IEEE Trans. Magnetic 39 3378

    [10]

    Bick M, Panaitov G, Wolters N, Zhang Y, Bousack H, Braginski A I 1999 IEEE Trans. Appl. Supercond. 9 3780

    [11]

    Jenks W G, Sadeghi S S H, Wikswo J P 1997 Phys.D: Appl.Phys 30 293

    [12]

    Ma P, Dai Y, Gan Z, Yang X, Hua J 2009 Vacuum Electronics 1 33 (in Chinese) [马平, 戴远东, 甘子钊, 杨小牛, 华军 2009 真空电子技术 1 33]

    [13]

    Yi H R, Zhang Y, Schubert J, Zander W, Zeng X H, Klein N 2000 J. Appl. Phys. 88 5966

    [14]

    Meng S C, Deng P, Nie R J, Xie F X, Ma P, Liu L Y, Wang S Z, Dai Y D 2002 Chin. J. Low Temp. Phys. 24 179 (in Chinese) [孟树超, 邓鹏, 聂瑞娟, 谢飞翔, 马平, 刘乐原, 王守证, 戴远东 2002 低温物理学报 24 179]

    [15]

    Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta. Phys. Sin. 52 2580 (in Chinese) [刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 物理学报 52 2580]

    [16]

    Xie Y J, Liu Y, Li L, Ding H Q, Lei Z Y 2009 HFSS Principle and Engineering Application (I) (Beijing: Science Press) p58 (in Chinese) [谢拥军, 刘莹, 李磊, 丁海强, 雷振亚 2009 HFSS原理与工程应用 (第一版) (北京: 科学出版社) 第58页]

    [17]

    Tang M C, Xiao S, Deng T, Wang D, Guan J, Wang B, Ge G D 2011 IEEE Trans. AP. 9 1372

    [18]

    Zhang Y 2001 IEEE Trans. Appl. Supercond 11 1038

计量
  • 文章访问数:  3825
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-05
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器

  • 1. 天线与微波技术重点实验室, 西安电子科技大学, 西安 710071;
  • 2. 北京航空航天大学, 北京 100191
    基金项目: 

    通信系统信息控制技术国家级重点实验室基金(批准号: 9140C1304021003)资助的课题.

摘要: 文提出了一种新型磁通聚焦器和谐振器. 磁通聚焦器引入了单互补开环谐振器结构 (单CSRR); 谐振器则采用环绕着绕磁通聚焦器的发夹型3阶阶梯阻抗谐振器 (SIR). 采用ANSYS HFSSv.11高频结构仿真软件对提出的磁通聚焦器和谐振器进行了仿真, 并对单CSRR进行了理论分析. 仿真和理论分析表明: 单CSRR的引入, 提高了磁通聚焦器的聚磁效果, 改善了磁通聚焦器与RF SQUID垫圈的耦合(耦合系数ksc为引入单CSRR前的2倍), 并且有效面积增大到1.227 mm2.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回