搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优滤波器的强混沌背景中谐波信号检测方法研究

胡进峰 张亚璇 李会勇 杨淼 夏威 李军

引用本文:
Citation:

基于最优滤波器的强混沌背景中谐波信号检测方法研究

胡进峰, 张亚璇, 李会勇, 杨淼, 夏威, 李军

Harmonic signal detection method from strong chaotic background based on optimal filter

Hu Jin-Feng, Zhang Ya-Xuan, Li Hui-Yong, Yang Miao, Xia Wei, Li Jun
PDF
导出引用
  • 强混沌背景中的微弱谐波信号检测有重要的工程研究意义. 目前的检测方法主要是基于Takens理论的混沌相空间重构方法, 然而这些方法往往对信干噪比要求高, 且对高斯白噪声敏感等. 本文注意到混沌信号的二阶统计特性是不变的, 根据这个特点提出了一种基于最优滤波器的强混沌背景中的微弱谐波信号检测方法. 该方法首先构建一个数据矩阵, 在频域上对每个频率通道分别检测谐波信号, 从而将信号检测问题转化为最优化问题, 然后利用最优化理论设计滤波器, 使待检测频率通道的信号增益保持不变, 而尽量抑制其他频率通道的信号, 最后通过判断每一频率通道的输出信干噪比来检测谐波信号. 与传统方法相比, 本文方法有如下优点: 1)可以检测更低信干噪比下的微弱谐波信号; 2)可检测的信号幅度范围更大; 3)抗白噪声性能更强. 仿真结果证明了本文方法的有效性.
    It is of great significance to study the weak harmonic signal detection from strong chaotic background. Current detection methods mainly use the chaotic phase space reconstruction method based on Takens theory, among which the neural network method has attracted the most attention. However, these methods require high signal-to-interference-plus-noise ratio (SINR) and are sensitive to Gaussian white noise, etc. Noticing the fact that the second-order statistical properties of chaotic signals are stationary, we propose a harmonic signal detection method from strong chaotic background based on optimal filter. We first construct a data matrix, whose rows are the detection signal and reference signals. The reference signals only contain chaotic interference. Then we calculate the one-dimensional fast Fourier transformation of the data matrix to make each column of the matrix form a frequency channel. The harmonic signal can be detected by searching each frequency channel in the frequency domain, thus the signal detection problem is converted into an optimization problem. Further, we use the optimization theory to design a filter such that it can maintain the gain of the signal from the current frequency channel and suppress signals from other frequency channels as far as possible. Finally, the harmonic signal can be obtained by calculating the output SINR of each frequency channel. In order to reduce the calculation, we can further design a local region optimal filter. We choose part of frequency channels to constitute a local area, thus the dimension of the chaotic interference covariance matrix is greatly reduced. Theoretically speaking, the more the number of auxiliary frequency channels, the better the detection results are. However, in the practical application, choosing two channels on the left and right side of current channel each can obtain a very good detection effect. After obtaining the chaotic interference covariance matrix, we can further achieve the output SINR of each frequency channel. Compared with the traditional methods, the proposed method has the following advantages: 1) it can detect a weak harmonic signal under lower SINR; 2) it can detect a greater range of signal amplitude; 3) it is robust against white Gaussian noise. The simulation results with taking Lorenz system as the strong chaotic background show that the proposed method still has a very good detection effect when SINR =-81.03 dB, and the stronger the harmonic signal, the better the detection effect is, while the neural network method can work under the condition of SINR higher than -67.03 dB; the proposed method still can correctly detect the target signal in the case that the SNR is as low as -20 dB, but the neural network method has a poor detection effect under the same condition.
      通信作者: 胡进峰, hujf@uestc.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: ZYGX2014J021)和国家自然科学基金(批准号: 61101172, 61371184, 61101173, 61201280)资助的课题.
      Corresponding author: Hu Jin-Feng, hujf@uestc.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2014J021) and the National Natural Science Foundation of China (Grant Nos. 61101172, 61371184, 61101173, 61201280).
    [1]

    Hu J F, Guo J B 2008 Chaos 18 013121

    [2]

    Aghababa M P 2012 Chin. Phys. B 21 100505

    [3]

    Li H T, Zhu S L, Qi C H, Gao M X, Wang G Z 2013 Adv. Mater. Res. 734 3145

    [4]

    Khunkitti P, Kaewrawang A, Siritaratiwat A, Mewes T, Mewes C K, Kruesubthaworn A 2015 Appl. Phys. 117 17A908

    [5]

    Zhang Y, Liu S H, Hu X F, Wang L, Zhu L 2014 High Voltage Technol. 9 29 (in Chinese) [张悦, 刘尚合, 胡小锋, 王雷, 朱利 2014 高电压技术 9 29]

    [6]

    Leung H, Dubash N, Xie N 2002 IEEE Trans. Aerosp. Electron. Sys. 38 98

    [7]

    Guan J, Liu N B, Huang Y, He Y 2012 IET Radar Sonar Nav. 6 293

    [8]

    Li H C, Zhang J S 2005 Chin. Phys. Lett. 22 2776

    [9]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3771 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3771]

    [10]

    He G T, Luo M K 2012 Chin. Phys. Lett. 29 060204

    [11]

    Wang F P, Guo J B, Wang Z J, Xiao D C 2001 Acta Phys. Sin. 50 1019 (in Chinese) [汪芙平, 郭静波, 王赞基, 肖达川 2001 物理学报 50 1019]

    [12]

    Xu Y C, Qu X D, Li Z X 2015 Chin. Phys. B 24 034301

    [13]

    Chen C C, Yao K, Umeno K, Biglieri E 2001 IEEE Trans. Cir. Sys. I: Fundam. Theory Appl. 48 1110

    [14]

    Zhang H G, Ma T D, Fu J 2008 Chin. Phys. B 17 3616

    [15]

    Vali R, Berber S M, Nguang S K 2012 IEEE Trans. Cir. Sys. I: Reg. Papers 59 796

    [16]

    Vidal P, Kanzieper E 2012 Phys. Rev. Lett. 108 206806

  • [1]

    Hu J F, Guo J B 2008 Chaos 18 013121

    [2]

    Aghababa M P 2012 Chin. Phys. B 21 100505

    [3]

    Li H T, Zhu S L, Qi C H, Gao M X, Wang G Z 2013 Adv. Mater. Res. 734 3145

    [4]

    Khunkitti P, Kaewrawang A, Siritaratiwat A, Mewes T, Mewes C K, Kruesubthaworn A 2015 Appl. Phys. 117 17A908

    [5]

    Zhang Y, Liu S H, Hu X F, Wang L, Zhu L 2014 High Voltage Technol. 9 29 (in Chinese) [张悦, 刘尚合, 胡小锋, 王雷, 朱利 2014 高电压技术 9 29]

    [6]

    Leung H, Dubash N, Xie N 2002 IEEE Trans. Aerosp. Electron. Sys. 38 98

    [7]

    Guan J, Liu N B, Huang Y, He Y 2012 IET Radar Sonar Nav. 6 293

    [8]

    Li H C, Zhang J S 2005 Chin. Phys. Lett. 22 2776

    [9]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3771 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3771]

    [10]

    He G T, Luo M K 2012 Chin. Phys. Lett. 29 060204

    [11]

    Wang F P, Guo J B, Wang Z J, Xiao D C 2001 Acta Phys. Sin. 50 1019 (in Chinese) [汪芙平, 郭静波, 王赞基, 肖达川 2001 物理学报 50 1019]

    [12]

    Xu Y C, Qu X D, Li Z X 2015 Chin. Phys. B 24 034301

    [13]

    Chen C C, Yao K, Umeno K, Biglieri E 2001 IEEE Trans. Cir. Sys. I: Fundam. Theory Appl. 48 1110

    [14]

    Zhang H G, Ma T D, Fu J 2008 Chin. Phys. B 17 3616

    [15]

    Vali R, Berber S M, Nguang S K 2012 IEEE Trans. Cir. Sys. I: Reg. Papers 59 796

    [16]

    Vidal P, Kanzieper E 2012 Phys. Rev. Lett. 108 206806

  • [1] 刘远, 袁冀扬, 周心雨, 谷双全, 周沛, 穆鹏华, 李念强. 基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生. 物理学报, 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [2] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅. 基于强耦合Duffing振子的微弱脉冲信号检测与参数估计. 物理学报, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [3] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪. 物理学报, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [4] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [5] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [6] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [7] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [8] 阎娟, 潘炜, 李念强, 张力月, 刘庆喜. 外光注入半导体环形激光器同时产生两路宽带混沌信号. 物理学报, 2016, 65(20): 204203. doi: 10.7498/aps.65.204203
    [9] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [10] 王梦蛟, 吴中堂, 冯久超. 一种参数优化的混沌信号自适应去噪算法. 物理学报, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [11] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [12] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [13] 王梦蛟, 曾以成, 谢常清, 朱高峰, 唐淑红. Chen系统在微弱信号检测中的应用. 物理学报, 2012, 61(18): 180502. doi: 10.7498/aps.61.180502
    [14] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波. 物理学报, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [15] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [16] 王永生, 姜文志, 赵建军, 范洪达. 一种Duffing弱信号检测新方法及仿真研究. 物理学报, 2008, 57(4): 2053-2059. doi: 10.7498/aps.57.2053
    [17] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [18] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [19] 张家树, 李恒超, 肖先赐. 连续混沌信号的离散余弦变换域二次实时滤波预测. 物理学报, 2004, 53(3): 710-716. doi: 10.7498/aps.53.710
    [20] 高金峰, 梁占红. 通用标量混沌信号同步系统及其控制器的backstepping设计. 物理学报, 2004, 53(8): 2454-2460. doi: 10.7498/aps.53.2454
计量
  • 文章访问数:  4425
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-08-12
  • 刊出日期:  2015-11-05

/

返回文章
返回