搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化铁的自旋极化效应及势能函数

郑圆圆 任桂明 陈锐 王兴明 谌晓洪 王玲 袁丽 黄晓凤

引用本文:
Citation:

氢化铁的自旋极化效应及势能函数

郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤

Spin polarization and potential energy function of FeH2

Zheng Yuan-Yuan, Ren Gui-Ming, Chen Rui, Wang Xing-Ming, Chen Xiao-Hong, Wang Ling, Yuan Li, Huang Xiao-Feng
PDF
导出引用
  • B3LYP/6-311++g**水平上预测了FeH2及FeH稳定构型讨论了其自旋极化效应,并与实验结果进行了比较. 结果表明其基态分别为FeH2(5A1)和FeH(4Δ),自旋态对构型和物理性质均有显著影响. FeH2具有C2v对称性. 势能与核间距的关系用4参数Murrell-Sorbie函数进行拟合得到其分析势能函数. 由此推导出力常数和光谱数据,并由多体项展式理论导出了基态FeH2分子的分析势能函数. 用这个分析势能函数分析表明:H+FeH生成FeH2(C2v)分子通道存在一个4.68 eV深的势阱,易生成H–Fe–H络合物分子. 反应Fe+H2 → HFeH,ΔH=-0.08305 eV,是放热反应.
    Among the three methods (B3LYP, BP86 and B3LYP*) in density functional theory (DFT), the best tools for predicting the ground state of metal hydride, the B3LYP method for predicting the harmonic frequencies and geometric parameters of the ground state of FeH2 gives result in good accordance with the experimental data; so it is employed to optimize the structure of molecules FeH and FeH2 in possible geometries and multiplicities based on 6-311++g(d,p) level in searching of the structure with the lowest energy. Results show that their electronic states in the ground states are FeH(4Δ) and FeH2(5A1), supposing that the two molecules have three and four unpaired electrons respectively, with spin polarization effect, and they are paramagnetic substances, and the stable structure of molecule FeH2 is of C2v symmetry. The Murrell-Sorbie potential energy function-the sufficient analytical potential function form for biatomic molecules-with 4 parameters in molecule FeH is derived via the least square method. Their spectra data and force constants are deduced according to the results. The analytical potential energy function of FeH2 is also obtained from the many-body expansion theory, which gives the analytical potential function of triatom molecules of the single-value potential surface consisting of three parts with single body terms, two body terms, and three body terms. The deduced analytical functions for FeH2 in this paper predict successfully a global minimum stable structure of quintet FeH2 with a 4.68 eV depth potential trap, and other higher energy stable and saddle structures. This potential function predicts the balanced ground structure and the second derivative force constants of this molecule. According to the potential function of FeH2(C2v), when it is formed from H and FeH, a potential trap with its depth being 4.68 eV is excited and the complex molecule of H–Fe–H is easily formed. The reaction of Fe+H2 → HFeH is exothermic with ΔH=-0.08305 eV.
    • 基金项目: 四川省教育厅重点项目(批准号:14ZA0113)和西华大学研究生创新基金(批准号:ycjj2014127) 资助的课题.
    • Funds: Project supported by the Key Fund Project of Department of Education Sichuan Province, China (Grant No. 14ZA0113), and the Innovation Fund of Postgraduate, Xihua University, Sichuan Province, China (Grant No. ycjj2014127).
    [1]

    Wende S Reiners A G. Ludwig H 2009 Astro. Astrophys. 508 1429

    [2]

    Körsgen H Mrtz P Lipus K Urban W, Towle J P Brown J M 1996 J. Chem. Phys. 104 4859

    [3]

    Ozin G A McCaffrey J G 1984 J. Phys. Chem 88 645

    [4]

    Rubinovitz R L Nixon E R 1986 J. Phys. Chem 90 1940

    [5]

    Heike M Christel M, Marian M 1998 Mol. Phys. 94 843

    [6]

    Ishimatsu N 2011 The Rev. Hig. Pres. Sci. and Tech. 21 176 (in Japanese)

    [7]

    Narygina O Dubrovinsky L S McCammon C A Kurnosov A Kantor I Y Prakapenka V B Dubrovinskaia N A 2011 Ear Plan Sci Let 307 409

    [8]

    Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011 The Rev. Hig. Pres. Sci. and Tech. 21 190 (in Japanese) [Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011高圧力の科学と技術 21 190]

    [9]

    Körsgen H Evenson K M Brown J M 1997 J. Chem. Phys 107 1025

    [10]

    Körsgen H Urban W Brown J M 1999 J. Chem. Phys. 110 3861

    [11]

    Miller A E S Feigerle C S Lineberger W C 1986 J. Chem. Phys. 84 4127

    [12]

    Martini H Marian C M 1998 Molecular Physics 94 843

    [13]

    Minot C Demangeat C 1987 J. Chem. Phys. 86 2161

    [14]

    Tanaka K, Nobusada K 2004 Chem. Phys. Lett. 388 389

    [15]

    Siegbahn P E M Blomberg M R A Bauschlicher J C W 1984 J. Chem. Phys. 81 1373

    [16]

    Granucci G Persico M 1992 Chem. Phys. 167 121

    [17]

    Martini H Marian C M Peri M 1998 Mol. Phys. 95 27

    [18]

    Xuefeng W, Andrews L 2009 J. Phys. Chem. A 113 551

    [19]

    Du Q Wang L, Chen X H, Wang H Y, Gao T Zhu Z H 2009 Acta Phys. Sin. 58 0178 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2009 物理学报 58 0178]

    [20]

    Becke A D 1988 Phys. Rew. A 38 3098

    [21]

    Lee C, Yang W Parr R G 1988 Phys. ReV. B 37 785

    [22]

    Becke A D 1988 Phys. ReV. A 38 3098

    [23]

    Perdew J P 1986 Phys. ReV. B 33 8822

    [24]

    Dendramis D Zee R J V Weltner J W 1979 The Astro 231 632

    [25]

    Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press) (in Chinses) [朱正和1996原子分子反应静力学(北京: 科学出版社)]

    [26]

    Du Q, Wang L, Shen X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 物理学报 55 6308]

    [27]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [28]

    Wu D L, Tan B, Wan H J, Xie A D 2013 Chin. Phys. B 22 123101

  • [1]

    Wende S Reiners A G. Ludwig H 2009 Astro. Astrophys. 508 1429

    [2]

    Körsgen H Mrtz P Lipus K Urban W, Towle J P Brown J M 1996 J. Chem. Phys. 104 4859

    [3]

    Ozin G A McCaffrey J G 1984 J. Phys. Chem 88 645

    [4]

    Rubinovitz R L Nixon E R 1986 J. Phys. Chem 90 1940

    [5]

    Heike M Christel M, Marian M 1998 Mol. Phys. 94 843

    [6]

    Ishimatsu N 2011 The Rev. Hig. Pres. Sci. and Tech. 21 176 (in Japanese)

    [7]

    Narygina O Dubrovinsky L S McCammon C A Kurnosov A Kantor I Y Prakapenka V B Dubrovinskaia N A 2011 Ear Plan Sci Let 307 409

    [8]

    Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011 The Rev. Hig. Pres. Sci. and Tech. 21 190 (in Japanese) [Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011高圧力の科学と技術 21 190]

    [9]

    Körsgen H Evenson K M Brown J M 1997 J. Chem. Phys 107 1025

    [10]

    Körsgen H Urban W Brown J M 1999 J. Chem. Phys. 110 3861

    [11]

    Miller A E S Feigerle C S Lineberger W C 1986 J. Chem. Phys. 84 4127

    [12]

    Martini H Marian C M 1998 Molecular Physics 94 843

    [13]

    Minot C Demangeat C 1987 J. Chem. Phys. 86 2161

    [14]

    Tanaka K, Nobusada K 2004 Chem. Phys. Lett. 388 389

    [15]

    Siegbahn P E M Blomberg M R A Bauschlicher J C W 1984 J. Chem. Phys. 81 1373

    [16]

    Granucci G Persico M 1992 Chem. Phys. 167 121

    [17]

    Martini H Marian C M Peri M 1998 Mol. Phys. 95 27

    [18]

    Xuefeng W, Andrews L 2009 J. Phys. Chem. A 113 551

    [19]

    Du Q Wang L, Chen X H, Wang H Y, Gao T Zhu Z H 2009 Acta Phys. Sin. 58 0178 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2009 物理学报 58 0178]

    [20]

    Becke A D 1988 Phys. Rew. A 38 3098

    [21]

    Lee C, Yang W Parr R G 1988 Phys. ReV. B 37 785

    [22]

    Becke A D 1988 Phys. ReV. A 38 3098

    [23]

    Perdew J P 1986 Phys. ReV. B 33 8822

    [24]

    Dendramis D Zee R J V Weltner J W 1979 The Astro 231 632

    [25]

    Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press) (in Chinses) [朱正和1996原子分子反应静力学(北京: 科学出版社)]

    [26]

    Du Q, Wang L, Shen X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 物理学报 55 6308]

    [27]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [28]

    Wu D L, Tan B, Wan H J, Xie A D 2013 Chin. Phys. B 22 123101

  • [1] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质. 物理学报, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [2] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [3] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展. 物理学报, 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [4] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [5] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [6] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [7] 秦健萍, 梁瑞瑞, 吕瑾, 武海顺. ComAln(m+n ≤ 6)团簇的结构和磁性理论研究. 物理学报, 2014, 63(13): 133102. doi: 10.7498/aps.63.133102
    [8] 刘曼, 闫强, 周丽萍, 韩琴. 封装进过渡金属原子的单壁碳纳米管:密度泛函理论研究. 物理学报, 2014, 63(7): 077302. doi: 10.7498/aps.63.077302
    [9] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [10] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 物理学报, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [11] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [12] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [13] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [14] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性. 物理学报, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [15] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [16] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [17] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [18] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [19] 蒙大桥, 蒋刚, 刘晓亚, 罗德礼, 张万箱, 朱正和. Pu3体系的结构与势能函数. 物理学报, 2001, 50(7): 1268-1273. doi: 10.7498/aps.50.1268
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  3733
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-14
  • 修回日期:  2014-06-19
  • 刊出日期:  2014-11-05

氢化铁的自旋极化效应及势能函数

  • 1. 西华大学物理与化学学院, 成都 610039;
  • 2. 西华大学先进计算中心, 成都 610039
    基金项目: 四川省教育厅重点项目(批准号:14ZA0113)和西华大学研究生创新基金(批准号:ycjj2014127) 资助的课题.

摘要: B3LYP/6-311++g**水平上预测了FeH2及FeH稳定构型讨论了其自旋极化效应,并与实验结果进行了比较. 结果表明其基态分别为FeH2(5A1)和FeH(4Δ),自旋态对构型和物理性质均有显著影响. FeH2具有C2v对称性. 势能与核间距的关系用4参数Murrell-Sorbie函数进行拟合得到其分析势能函数. 由此推导出力常数和光谱数据,并由多体项展式理论导出了基态FeH2分子的分析势能函数. 用这个分析势能函数分析表明:H+FeH生成FeH2(C2v)分子通道存在一个4.68 eV深的势阱,易生成H–Fe–H络合物分子. 反应Fe+H2 → HFeH,ΔH=-0.08305 eV,是放热反应.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回