搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST上中性束注入和离子回旋共振加热下快离子分布函数层析反演

孙延旭 黄娟 高伟 常加峰 张伟 史唱 李云鹤

引用本文:
Citation:

EAST上中性束注入和离子回旋共振加热下快离子分布函数层析反演

孙延旭, 黄娟, 高伟, 常加峰, 张伟, 史唱, 李云鹤

Tomography of fast ion distribution function under neutral beam injection and ion cyclotron resonance heating on EAST

Sun Yan-Xu, Huang Juan, Gao Wei, Chang Jia-Feng, Zhang Wei, Shi Chang, Li Yun-He
PDF
HTML
导出引用
  • 聚变等离子体中快离子分布函数的速度空间层析反演(tomography)是研究磁约束核聚变装置中快离子分布和输运的重要手段. 在东方超环(experimental advanced superconducting tokamak, EAST)中性束注入(neutral beam injection, NBI)与离子回旋共振加热(ion cyclotron range of frequencies heating, ICRF)协同加热实验中, 快离子诊断测量信号以及TRANSP模拟获得的快离子分布函数中观测到协同效应产生的高于中性束注入能量的高能粒子. 为了研究快离子分布行为, 获得不同加热条件下诊断测量的快离子分布函数, 采用不同的正则化方法, 增加先验信息以及将快离子Dα光谱诊断(fast-ion Dα spectroscopy, FIDA)与中子发射谱仪(neutron emission spectrometers, NES)相结合等方式, 有效提高快离子诊断信噪比以及在速度空间权重覆盖率, 实现在单独NBI加热以及NBI和ICRF协同加热条件下基于诊断测量的层析反演, 获得真实可靠的快离子分布函数. 这为下一步提高NBI与ICRF协同加热效率, 研究协同加热机制以及相关的快离子分布和输运行为奠定基础.
    In magnetic confinement fusion devices, velocity-space tomography of fast-ion velocity distribution function is crucial for investigating fast-ion distribution and transport. In the neutral beam injection (NBI) and ion cyclotron resonance heating (ICRF) synergistic heating experiments in Experimental Advanced Superconducting Tokamak (EAST), high-energy particles with energy exceeding the particle energy in NBI are observed. Simulations of synergistic effect on fast-ion velocity distribution function given by TRANSP also show the existence of particles with energy higher than the particle energy in NBI. To investigate the behaviors of fast ion distribution and calculate the velocity distribution functions under different heating conditions, the first-order Tikhonov regularization tomographic inversion method with higher inversion accuracy is introduced by comparing various regularization techniques. The limitations of the dual-view fast-ion Dα (FIDA) diagnostic measurements in velocity space are addressed by incorporating prior information such as null measurement and the known peaks and effectively mitigate the occurrence of artifacts. This method is first employed in the case of NBI heating. The NBI peak is successfully reconstructed at the expected location in velocity space, which shows significant improvement in the inversion results. In order to further validate the synergistic effect of NBI-ICRF heating and study the mechanism of fast ion distribution under synergistic heating, the combination of FIDA and neutron emission spectrometer (NES) is applied to the first-order Tikhonov regularization tomographic inversion method for enhancing the coverage of velocity space, through which the issue of artifacts in the inversion results is significantly improved, and thus the precision of the obtained fast-ion velocity distribution functions is enhanced. Based on the benefit described above, the method of combining NES diagnosis and FIDA diagnosis is used to obtain fast-ion velocity distribution functions in the NBI and ICRF synergistic heating discharge. The synergistic heating effect is manifested in the fast-ion velocity distribution. The availability of this inversion method in reconstructing fast-ion velocity distribution functions during high-performance operation of NBI-ICRF synergistic heating in the EAST experiment is confirmed. In the next-step EAST research, high performance discharge will demand more efficiency NBI and ICRF synergistic heating, the present work builds the stage for investigating the underlying mechanism of synergistic heating and the intricate behaviors associated with fast ion distribution and transport.
      通信作者: 黄娟, juan.huang@ipp.ac.cn
    • 基金项目: 国家磁约束聚变能源研究专项(批准号: 2019YFE03020004)和国家自然科学基金 (批准号: 11975276)资助的课题.
      Corresponding author: Huang Juan, juan.huang@ipp.ac.cn
    • Funds: Project supported by the Special Project for National Magnetic Confinement Fusion Energy Research of China (Grant No. 2019YFE03020004) and the National Natural Science Foundation of China (Grant No. 11975276).
    [1]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar

    [2]

    Heidbrink W W, Luo Y, Burrell K H, Harvey R W, Pinsker R I, Ruskov E 2007 Plasma Phys. Control. Fusion 49 1457Google Scholar

    [3]

    Reisner M, Fable E, Stober J, Bock A, Bañon Navarro A, Di Siena A, Fischer R, Bobkov V, McDermott R 2020 Nucl. Fusion 60 082005Google Scholar

    [4]

    Huynh E A L P, Van Eester D, Bilato C R, Varje J, Johnson T, Sauter O, Villard L, Ferreira J, JET contributors and the EUROfusion-IM Team 2020 AIP Conf. Proc. 2254 060003Google Scholar

    [5]

    Hillairet J, Gallart D, Mantsinen M, Challis C, Frigione D, Graves J, Hobirk J, Belonohy E, Czarnecka A, Eriksson J, Goniche M, Hellesen C, Jacquet P, Joffrin E, Krawczyk N, King D, Lennholm M, Lerche E, Pawelec E, Sips G, Solano E, Tsalas M, Valisa M 2017 EPJ Web Conf. 157 02006Google Scholar

    [6]

    Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727Google Scholar

    [7]

    Michael C A, Conway N, Crowley B, Jones O, Heidbrink W W, Pinches S, Braeken E, Akers R, Challis C, Turnyanskiy M, Patel A, Muir D, Gaffka R, Bailey S 2013 Plasma Phys. Control. Fusion 55 095007Google Scholar

    [8]

    Nielsen S K, Stejner M, Rasmussen J, Jacobsen A S, Korsholm S B, Leipold F, Maraschek M, Meo F, Michelsen P K, Moseev D, Salewski M, Schubert M, Stober J, Suttrop W, Tardini G, Wagner D 2015 Plasma Phys. Control. Fusion 57 035009Google Scholar

    [9]

    Salewski M, Nocente M, Madsen B, Abramovic I, Fitzgerald M, Gorini G, Hansen P C, Heidbrink W W, Jacobsen A S, Jensen T, Kiptily V G, Klinkby E B, Korsholm S B, Kurki-Suonio T, Larsen A W, Leipold F, Moseev D, Nielsen S K, Pinches S D, Rasmussen J, Rebai M, Schneider M, Shevelev A, Sipila S, Stejner M, Tardocchi M 2018 Nucl. Fusion 58 096019Google Scholar

    [10]

    Nocente M, Källne J, Salewski M, Tardocchi M, Gorini G 2015 Nucl. Fusion 55 123009Google Scholar

    [11]

    Eriksson J, Nocente M, Binda F, Cazzaniga C, Conroy S, Ericsson G, Giacomelli L, Gorini G, Hellesen C, Hellsten T, Hjalmarsson A, Jacobsen A S, Johnson T, Kiptily V, Koskela T, Mantsinen M, Salewski M, Schneider M, Sharapov S, Skiba M, Tardocchi M, Weiszflog M 2015 Nucl. Fusion 55 123026Google Scholar

    [12]

    Jacobsen A S, Salewski M, Eriksson J, Ericsson G, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M 2015 Nucl. Fusion 55 053013Google Scholar

    [13]

    Salewski M, Geiger B, Jacobsen A S, Hansen P C, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Nocente M, Odstrčil T, Rasmussen J, Stagner L, Stejner M, Weiland M 2016 Nucl. Fusion 56 106024Google Scholar

    [14]

    Salewski M, Geiger B, Jacobsen A S, García-Muñoz M, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardini G, Weiland M 2014 Nucl. Fusion 54 023005Google Scholar

    [15]

    Weiland M, Geiger B, Jacobsen A S, Reich M, Salewski M, Odstrčil T 2016 Plasma Phys. Control. Fusion 58 025012Google Scholar

    [16]

    Geiger B, Weiland M, Jacobsen A S, Rittich D, Dux R, Fischer R, Hopf C, Maraschek M, McDermott R M, Nielsen S K, Odstrcil T, Reich M, Ryter F, Salewski M, Schneider P A, Tardini G 2015 Nucl. Fusion 55 083001Google Scholar

    [17]

    Weiland M, Bilato R, Geiger B, Schneider P A, Tardini G, Garcia-Muñoz M, Ryter F, Salewski M, Zohm H 2017 Nucl. Fusion 57 116058Google Scholar

    [18]

    Madsen B, Salewski M, Heidbrink W W, Stagner L, Podestà M, Lin D, Garcia A V, Hansen P C, Huang J 2020 Nucl. Fusion 60 066024Google Scholar

    [19]

    Madsen B, Salewski M, Huang J, Jacobsen A S, Jones O, McClements K G, MAST Team 2018 Rev. Sci. Instrum. 89 10D125Google Scholar

    [20]

    Jacobsen A S, Salewski M, Geiger B, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Weiland M 2016 Plasma Phys. Control. Fusion 58 042002Google Scholar

    [21]

    Salewski M, Gorini G, Jacobsen A S, Kiptily V G, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardocchi M, JET Contributors 2016 Nucl. Fusion 56 046009Google Scholar

    [22]

    Su J, Wan B, Huang J, Madsen B, Salewski M, Sun Y, Wang J, Fu J, Chang J, Wu C, Liang L, Chen Y, Zhong G, Liu H, Zang Q, Li Y, Lyu B, Qian J, Gong X 2021 Plasma Sci. Technol. 23 095103Google Scholar

    [23]

    Madsen B, Huang J, Salewski M, Järleblad H, Hansen P C, Stagner L, Su J, Chang J F, Fu J, Wang J, Liang L Z, Zhong G, Li Y, Lyu B, Liu H, Zang Q, Luo Z, Nocente M, Moseev D, Fan T, Zhang Y, Yang D, Sun J, Liao L 2020 Plasma Phys. Control. Fusion 62 115019Google Scholar

    [24]

    Zhang X J, Yang H, Qin C M, Yuan S, Zhao Y P, Wang Y S, Liu L N, Mao Y Z, Cheng Y, Gong X Z, Xu G S, Song Y T, Li J G, Wan B N, Zhang K, Zhang B, Ai L, Wang G X, Guo Y Y 2022 Nucl. Fusion 62 086038Google Scholar

    [25]

    Zhang W, Zhu G H, Zhang X J, Zhong G Q, Ai L, Chu Y Q, Fan T S, Fan H C, Guo Y Y, Hao B L, Huang J, Jin Y F, Liu L N, Liao L Y, Li Y H, Liang Q C, Sun Y X, Wang G X, Yang D K, Yang H, Zhang H P 2023 Nucl. Fusion 63 056015Google Scholar

    [26]

    Ge L J, Hu Z M, Zhang Y M, Sun J Q, Yuan X, Peng X Y, Chen Z J, Du T F, Gorini G, Nocente M, Tardocchi M, Hu L Q, Zhong G Q, Lin S Y, Wan B N, Li X Q, Zhang G H, Chen J X, Fan T S 2018 Plasma Phys. Control. Fusion 60 095004Google Scholar

    [27]

    Hou Y M, Wu C R, Huang J, Heidbrink W W, von Hellermann M G, Xu Z, Jin Z, Chang J F, Zhu Y B, Gao W, Chen Y J, Lyu B, Hu R J, Zhang P F, Zhang L, Gao W, Wu Z W, Yu Y, Ye M Y, Team E 2016 Rev. Sci. Instrum. 87 11E552Google Scholar

    [28]

    Jacobsen A S, Stagner L, Salewski M, Geiger B, Heidbrink W W, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Thomsen H, Weiland M 2016 Plasma Phys. Control. Fusion 58 045016Google Scholar

    [29]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [30]

    Salewski M, Geiger B, Nielsen S K, Bindslev H, Garcia-Munoz M, Heidbrink W W, Korsholm S B, Leipold F, Meo F, Michelsen P K, Moseev D, Stejner M, Tardini G, Team A U 2012 Nucl. Fusion 52 103008Google Scholar

  • 图 1  EAST托卡马克上四条中性束束线位置、O和B窗口FIDA视图以及NES的布局 (a)俯视图; (b) 极向截面图. 视场中的红线是本文所分析的信号的观测位置

    Fig. 1.  Layout of four neutral beams, the O and B-port view of FIDA, the location of the NES on EAST: (a) Top view; (b) poloidal view. The red lines-of-sight are analyzed in this paper for shot #113648.

    图 2  归一化的权重函数总和 (a) NES H窗口; (b) FIDA O窗口; (c) FIDA B窗口

    Fig. 2.  Normalized weight function coverage: (a) NES H-port; (b) FIDA O-port; (c) FIDA B-port.

    图 3  #113648放电参数时序演化图 (a) 中子产额; (b) 极向比压; (c) 中性束注入功率; (d) ICRF加热功率

    Fig. 3.  Time traces of shot #113648: (a) Neutron yield; (b) poloidal beta; (c) neutral beam injection power; (d) ICRF heating power.

    图 4  单独NBI以及NBI-ICRF协同加热时双视图FIDA测量光谱 (a) 切向FIDA信号; (b)垂直FIDA信号; 误差棒为诊断束打开区间测量光谱的整体标准差

    Fig. 4.  Dual view FIDA measurement spectrum of NBI only and NBI-ICRF synergetic heating: (a) Tangential view; (b) vertical view.

    图 5  单独NBI以及NBI-ICRF协同加热时NES能谱

    Fig. 5.  NES spectrum of NBI only and NBI-ICRF synergetic heating.

    图 6  TRANSP模拟的快离子分布函数 (a)单独NBI加热; (b) NBI-ICRF协同加热; 黑色虚线为NBI能量, 黑色实线为单独NBI加热时快离子能量上限

    Fig. 6.  TRANSP simulation of fast ion distribution function: (a) NBI only heating; (b) NBI-ICRF synergetic heating. Black dashed line is the NBI injection energy, black solid line is the upper limit of fast ion energy for NBI only.

    图 7  沿负俯仰角积分的快离子分布能谱图.

    Fig. 7.  Fast ion distribution energy spectrum integrated along the negative pitch angle.

    图 8  单独NBI时基于FIDA诊断测量的快离子分布函数层析反演 (a)零阶Tikhonov正则化; (b) 一阶Tikhonov正则化; (c) 一阶Tikhonov正则化, 空值测量区域; (d) 一阶Tikhonov正则化, 已知峰值位置

    Fig. 8.  Reconstructions of the fast ion distribution function based on FIDA diagnostic measurements during NBI only heating: (a) Zero-order Tikhonov regularization; (b) first-order Tikhonov regularization; (c) first-order Tikhonov regularization, null measurement; (d) first-order Tikhonov regularization, known peak.

    图 9  NBI-ICRF协同加热阶段基于TRANSP模拟合成信号的层析反演 (a) 零阶Tikhonov正则化; (b) 一阶Tikhonov正则化; (c) 一阶Tikhonov正则化, 空值测量区域

    Fig. 9.  Reconstructions of synthetic signal based on the TRANSP distributions: (a) Zero-order Tikhonov regularization; (b) first-order Tikhonov regularization; (c) first-order Tikhonov regularization, null measurement.

    图 10  基于快离子诊断数据的分布函数层析反演 (a), (b) 不添加先验信息; (c), (d) TRANSP模拟的快离子能量上限作为先验信息; 其中(a), (c)仅使用FIDA测量; (b), (d) FIDA与NES测量结合

    Fig. 10.  Reconstructions based on fast ion diagnostic data: (a), (b) Without adding a priori information; (c), (d) fast ion energy upper bounds for TRANSP simulations as prior information. Only FIDA measurement is used in panel (a) and (c); FIDA in combination with NES measurements are used in panel (b) and (d).

  • [1]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar

    [2]

    Heidbrink W W, Luo Y, Burrell K H, Harvey R W, Pinsker R I, Ruskov E 2007 Plasma Phys. Control. Fusion 49 1457Google Scholar

    [3]

    Reisner M, Fable E, Stober J, Bock A, Bañon Navarro A, Di Siena A, Fischer R, Bobkov V, McDermott R 2020 Nucl. Fusion 60 082005Google Scholar

    [4]

    Huynh E A L P, Van Eester D, Bilato C R, Varje J, Johnson T, Sauter O, Villard L, Ferreira J, JET contributors and the EUROfusion-IM Team 2020 AIP Conf. Proc. 2254 060003Google Scholar

    [5]

    Hillairet J, Gallart D, Mantsinen M, Challis C, Frigione D, Graves J, Hobirk J, Belonohy E, Czarnecka A, Eriksson J, Goniche M, Hellesen C, Jacquet P, Joffrin E, Krawczyk N, King D, Lennholm M, Lerche E, Pawelec E, Sips G, Solano E, Tsalas M, Valisa M 2017 EPJ Web Conf. 157 02006Google Scholar

    [6]

    Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727Google Scholar

    [7]

    Michael C A, Conway N, Crowley B, Jones O, Heidbrink W W, Pinches S, Braeken E, Akers R, Challis C, Turnyanskiy M, Patel A, Muir D, Gaffka R, Bailey S 2013 Plasma Phys. Control. Fusion 55 095007Google Scholar

    [8]

    Nielsen S K, Stejner M, Rasmussen J, Jacobsen A S, Korsholm S B, Leipold F, Maraschek M, Meo F, Michelsen P K, Moseev D, Salewski M, Schubert M, Stober J, Suttrop W, Tardini G, Wagner D 2015 Plasma Phys. Control. Fusion 57 035009Google Scholar

    [9]

    Salewski M, Nocente M, Madsen B, Abramovic I, Fitzgerald M, Gorini G, Hansen P C, Heidbrink W W, Jacobsen A S, Jensen T, Kiptily V G, Klinkby E B, Korsholm S B, Kurki-Suonio T, Larsen A W, Leipold F, Moseev D, Nielsen S K, Pinches S D, Rasmussen J, Rebai M, Schneider M, Shevelev A, Sipila S, Stejner M, Tardocchi M 2018 Nucl. Fusion 58 096019Google Scholar

    [10]

    Nocente M, Källne J, Salewski M, Tardocchi M, Gorini G 2015 Nucl. Fusion 55 123009Google Scholar

    [11]

    Eriksson J, Nocente M, Binda F, Cazzaniga C, Conroy S, Ericsson G, Giacomelli L, Gorini G, Hellesen C, Hellsten T, Hjalmarsson A, Jacobsen A S, Johnson T, Kiptily V, Koskela T, Mantsinen M, Salewski M, Schneider M, Sharapov S, Skiba M, Tardocchi M, Weiszflog M 2015 Nucl. Fusion 55 123026Google Scholar

    [12]

    Jacobsen A S, Salewski M, Eriksson J, Ericsson G, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M 2015 Nucl. Fusion 55 053013Google Scholar

    [13]

    Salewski M, Geiger B, Jacobsen A S, Hansen P C, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Nocente M, Odstrčil T, Rasmussen J, Stagner L, Stejner M, Weiland M 2016 Nucl. Fusion 56 106024Google Scholar

    [14]

    Salewski M, Geiger B, Jacobsen A S, García-Muñoz M, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardini G, Weiland M 2014 Nucl. Fusion 54 023005Google Scholar

    [15]

    Weiland M, Geiger B, Jacobsen A S, Reich M, Salewski M, Odstrčil T 2016 Plasma Phys. Control. Fusion 58 025012Google Scholar

    [16]

    Geiger B, Weiland M, Jacobsen A S, Rittich D, Dux R, Fischer R, Hopf C, Maraschek M, McDermott R M, Nielsen S K, Odstrcil T, Reich M, Ryter F, Salewski M, Schneider P A, Tardini G 2015 Nucl. Fusion 55 083001Google Scholar

    [17]

    Weiland M, Bilato R, Geiger B, Schneider P A, Tardini G, Garcia-Muñoz M, Ryter F, Salewski M, Zohm H 2017 Nucl. Fusion 57 116058Google Scholar

    [18]

    Madsen B, Salewski M, Heidbrink W W, Stagner L, Podestà M, Lin D, Garcia A V, Hansen P C, Huang J 2020 Nucl. Fusion 60 066024Google Scholar

    [19]

    Madsen B, Salewski M, Huang J, Jacobsen A S, Jones O, McClements K G, MAST Team 2018 Rev. Sci. Instrum. 89 10D125Google Scholar

    [20]

    Jacobsen A S, Salewski M, Geiger B, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Weiland M 2016 Plasma Phys. Control. Fusion 58 042002Google Scholar

    [21]

    Salewski M, Gorini G, Jacobsen A S, Kiptily V G, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardocchi M, JET Contributors 2016 Nucl. Fusion 56 046009Google Scholar

    [22]

    Su J, Wan B, Huang J, Madsen B, Salewski M, Sun Y, Wang J, Fu J, Chang J, Wu C, Liang L, Chen Y, Zhong G, Liu H, Zang Q, Li Y, Lyu B, Qian J, Gong X 2021 Plasma Sci. Technol. 23 095103Google Scholar

    [23]

    Madsen B, Huang J, Salewski M, Järleblad H, Hansen P C, Stagner L, Su J, Chang J F, Fu J, Wang J, Liang L Z, Zhong G, Li Y, Lyu B, Liu H, Zang Q, Luo Z, Nocente M, Moseev D, Fan T, Zhang Y, Yang D, Sun J, Liao L 2020 Plasma Phys. Control. Fusion 62 115019Google Scholar

    [24]

    Zhang X J, Yang H, Qin C M, Yuan S, Zhao Y P, Wang Y S, Liu L N, Mao Y Z, Cheng Y, Gong X Z, Xu G S, Song Y T, Li J G, Wan B N, Zhang K, Zhang B, Ai L, Wang G X, Guo Y Y 2022 Nucl. Fusion 62 086038Google Scholar

    [25]

    Zhang W, Zhu G H, Zhang X J, Zhong G Q, Ai L, Chu Y Q, Fan T S, Fan H C, Guo Y Y, Hao B L, Huang J, Jin Y F, Liu L N, Liao L Y, Li Y H, Liang Q C, Sun Y X, Wang G X, Yang D K, Yang H, Zhang H P 2023 Nucl. Fusion 63 056015Google Scholar

    [26]

    Ge L J, Hu Z M, Zhang Y M, Sun J Q, Yuan X, Peng X Y, Chen Z J, Du T F, Gorini G, Nocente M, Tardocchi M, Hu L Q, Zhong G Q, Lin S Y, Wan B N, Li X Q, Zhang G H, Chen J X, Fan T S 2018 Plasma Phys. Control. Fusion 60 095004Google Scholar

    [27]

    Hou Y M, Wu C R, Huang J, Heidbrink W W, von Hellermann M G, Xu Z, Jin Z, Chang J F, Zhu Y B, Gao W, Chen Y J, Lyu B, Hu R J, Zhang P F, Zhang L, Gao W, Wu Z W, Yu Y, Ye M Y, Team E 2016 Rev. Sci. Instrum. 87 11E552Google Scholar

    [28]

    Jacobsen A S, Stagner L, Salewski M, Geiger B, Heidbrink W W, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Thomsen H, Weiland M 2016 Plasma Phys. Control. Fusion 58 045016Google Scholar

    [29]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [30]

    Salewski M, Geiger B, Nielsen S K, Bindslev H, Garcia-Munoz M, Heidbrink W W, Korsholm S B, Leipold F, Meo F, Michelsen P K, Moseev D, Stejner M, Tardini G, Team A U 2012 Nucl. Fusion 52 103008Google Scholar

  • [1] 张伟, 张新军, 刘鲁南, 朱光辉, 杨桦, 张华朋, 郑艺峰, 何开洋, 黄娟. EAST上离子回旋波与中性束注入协同加热产生的高能粒子分布及输运研究. 物理学报, 2023, 72(21): 215201. doi: 10.7498/aps.72.20230482
    [2] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [3] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [4] 钟武律, 段旭如, 余德良, 韩晓玉, 杨立梅. HL-2A托卡马克中性束辐射光谱的数值模拟. 物理学报, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [5] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [6] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [7] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断. 物理学报, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [8] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究. 物理学报, 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
    [9] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [10] 杨晓华, 陈扬琴, 蔡佩佩, 王荣军, 卢晶晶. 速度调制光谱技术在等离子体诊断中的应用. 物理学报, 2000, 49(3): 421-425. doi: 10.7498/aps.49.421
    [11] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. 快波少数离子加热. 物理学报, 1999, 48(9): 1709-1717. doi: 10.7498/aps.48.1709
    [12] 杨 宇, 夏冠群, 赵国庆, 王 迅. Si离子注入对分子束外延Si1-xGex/Si量子阱发光特性的影响. 物理学报, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [13] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. 离子回旋波加热天线耦合的一种改进模型. 物理学报, 1998, 47(7): 1130-1136. doi: 10.7498/aps.47.1130
    [14] 吴正云, 黄启圣. 聚焦Ga+离子束注入方法研制半导体量子线结构. 物理学报, 1996, 45(3): 486-490. doi: 10.7498/aps.45.486
    [15] 刘胜侠. HT-6M中性注入加热电荷交换能谱分析. 物理学报, 1996, 45(3): 449-454. doi: 10.7498/aps.45.449
    [16] 王少杰, 邱励俭. 中性束注入产生的非麦氏分布对D-T聚变反应率的影响. 物理学报, 1996, 45(9): 1492-1500. doi: 10.7498/aps.45.1492
    [17] 刘胜侠. HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 物理学报, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [18] 王建国, 李有宜, 李建刚. HT-6M中性束注入加热理论分析. 物理学报, 1995, 44(1): 92-97. doi: 10.7498/aps.44.92
    [19] 沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, 实验小组. HT-6M托卡马克二次谐波离子回旋共振加热实验. 物理学报, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [20] 张军, 王恩耀, 关维恕, 程仕清, 段淑云, 顾彪, 尚振奎. 电子束注入简单磁镜中被电子迴旋共振加热捕获的实验研究. 物理学报, 1990, 39(8): 115-120. doi: 10.7498/aps.39.115-2
计量
  • 文章访问数:  2010
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-06-30
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-11-05

/

返回文章
返回