搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深亚波长约束的表面等离子体纳米激光器研究

黄洪 赵青 焦蛟 梁高峰 黄小平

引用本文:
Citation:

深亚波长约束的表面等离子体纳米激光器研究

黄洪, 赵青, 焦蛟, 梁高峰, 黄小平

Study of plasmonic nanolaser based on the deep subwavelength scale

Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping
PDF
导出引用
  • 本文提出了一种新颖的基于半导体纳米线/空气间隙/金属薄膜 复合结构的表面等离子体纳米激光器, 并给出了理论研究和仿真分析. 这种结构通过金属界面的表面等离子体模式与高增益介质纳米线波导模式耦合, 从而使场增强效应得到显著提高. 同时通过数值仿真研究, 得到该混合波导结构的模式特性和增益阈值随空气槽宽度、纳米线半径的变化规律, 表明它可以实现对输出光场的深亚波长约束, 同时保持低损耗传输和高场强限制能力. 通过最优化选择, 最终得到纳米等离子体激光器的最优结构尺寸.
    We have proposed a novel surface plasmonic nanolaser based on a nanowire/air gap/metal thin film hybrid structure to carry out theoretical research and simulation analysis. Opening an air groove in the MgF2 insulating layer, then making a nanowire embedded on the top of the air slot but maintaining a gap between the nanowire and the metal layer, thereby we produce a coupled hybrid plasmonic waveguide and a significant field enhancement effect. This structure enables the realization of an air gap. By simulating the modal properties and the lasing threshold of the hybrid plasmonic mode under different geometric parameters, the capacity of subwavelength scale with low propagation loss and high field confinement is demonstrated. Finally we achieve the nanolaser's optimal structure size. Compared with the general diffraction limit laser, this structure can reduce the physical size of the device and the physical mode. The proposed nanolaser could be easily integrated with various nanophotonic devices, and it may become an appealing candidate for future active plasmonic systems.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB301805);国家国际科技合作专项项目(批准号: OS20122R0151)和国家高技术研究发展计划(863计划)(批准号: 2011AA7022016, 2011AA8095044)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB301805), the International Cooperation Projects (Grant No. OS2012R0151), and the National High Technology Research and Development Program of China (Grant Nos. 2011AA7022016, 2011AA8095044).
    [1]

    Duan X F, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [2]

    Sorger V J, Ye Z L, Oulton R F, Wang Y, Bartal G, Yin X B, Zhang X 2011 Nature Communications 2 331

    [3]

    Oulton R F, Sorger V J, Zentraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [4]

    Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Winsner U 2009 Nature 460 1110

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [6]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [7]

    Fujii M, Leuthold J, Freude W 2009 IEEE Photon. Technol. Lett. 21 362

    [8]

    Bian Y S, Zheng Z, Liu Y, Liu J, Zhu J S, Zhou T 2011 Opt. Exp. 19 22417

    [9]

    Zhu L 2010 IEEE photon. Technol. Lett. 22 535

    [10]

    Oulton R F, Sorger V J, Genor D A, Pile D F P, Zhang X 2008 Nature Photon. 2 496

    [11]

    Bian Y S, Zheng Z, Liu Y, Zhu J S, Zhou T 2011 IEEE photon. Technol. Lett. 23 884

    [12]

    Raether H 1986 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (New York, London: Springer-Verlag) p8

    [13]

    Selvan S T, Hayakawa T, Nogami M 1999 Phys. Chem. B 103 7064

    [14]

    Chen X, Zhao Q, Fang L, Wang C T, Luo X G 2011 High Power Laser and Partical Beams 23 806 (in Chinese) [陈欣, 赵青, 方亮, 王长涛, 罗先刚 2011 强激光与粒子束 23 806]

    [15]

    Liang G F, Zhao Q, Chen X, Wang C T, Zhao Z Y, Luo X G 2012 Acta Phys. Sin. 10 104203 (in Chinese) [梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚 2012 物理学报 10 104203]

    [16]

    Sun H B, Maeda M, Takada K, Chon J W M, Gu M, Kawata S 2003 Appl. Phys. Lett. 83 819

    [17]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston London: Artech House) p354

    [18]

    Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese) [张玉强, 葛德彪 2009 物理学报 58 4573]

    [19]

    Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L, Gao D S 2012 IEEE J. Lightwave Technol. 30 163

    [20]

    Chen L, Zhang T, Li X, Huang W P 2012 Opt. Exp. 20 20535

    [21]

    Coldren L A, Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits Hoboken (NewYork: Wiley Interscience Publication)

  • [1]

    Duan X F, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [2]

    Sorger V J, Ye Z L, Oulton R F, Wang Y, Bartal G, Yin X B, Zhang X 2011 Nature Communications 2 331

    [3]

    Oulton R F, Sorger V J, Zentraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [4]

    Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Winsner U 2009 Nature 460 1110

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [6]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [7]

    Fujii M, Leuthold J, Freude W 2009 IEEE Photon. Technol. Lett. 21 362

    [8]

    Bian Y S, Zheng Z, Liu Y, Liu J, Zhu J S, Zhou T 2011 Opt. Exp. 19 22417

    [9]

    Zhu L 2010 IEEE photon. Technol. Lett. 22 535

    [10]

    Oulton R F, Sorger V J, Genor D A, Pile D F P, Zhang X 2008 Nature Photon. 2 496

    [11]

    Bian Y S, Zheng Z, Liu Y, Zhu J S, Zhou T 2011 IEEE photon. Technol. Lett. 23 884

    [12]

    Raether H 1986 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (New York, London: Springer-Verlag) p8

    [13]

    Selvan S T, Hayakawa T, Nogami M 1999 Phys. Chem. B 103 7064

    [14]

    Chen X, Zhao Q, Fang L, Wang C T, Luo X G 2011 High Power Laser and Partical Beams 23 806 (in Chinese) [陈欣, 赵青, 方亮, 王长涛, 罗先刚 2011 强激光与粒子束 23 806]

    [15]

    Liang G F, Zhao Q, Chen X, Wang C T, Zhao Z Y, Luo X G 2012 Acta Phys. Sin. 10 104203 (in Chinese) [梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚 2012 物理学报 10 104203]

    [16]

    Sun H B, Maeda M, Takada K, Chon J W M, Gu M, Kawata S 2003 Appl. Phys. Lett. 83 819

    [17]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston London: Artech House) p354

    [18]

    Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese) [张玉强, 葛德彪 2009 物理学报 58 4573]

    [19]

    Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L, Gao D S 2012 IEEE J. Lightwave Technol. 30 163

    [20]

    Chen L, Zhang T, Li X, Huang W P 2012 Opt. Exp. 20 20535

    [21]

    Coldren L A, Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits Hoboken (NewYork: Wiley Interscience Publication)

  • [1] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导. 物理学报, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [5] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [6] 董伟, 王志斌. 改进型混合表面等离子体微腔激光器的研究. 物理学报, 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [7] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发. 物理学报, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [9] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] 洪霞, 郭雄彬, 方旭, 李衎, 叶辉. 基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究. 物理学报, 2013, 62(17): 178502. doi: 10.7498/aps.62.178502
    [11] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [12] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [13] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [14] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [15] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [16] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究. 物理学报, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  5629
  • PDF下载量:  1345
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-10
  • 修回日期:  2013-02-27
  • 刊出日期:  2013-07-05

/

返回文章
返回