搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种电光可调的铌酸锂/钠基表面等离子体定向耦合器

马涛 马家赫 刘恒 田永生 刘少晖 王芳

引用本文:
Citation:

一种电光可调的铌酸锂/钠基表面等离子体定向耦合器

马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳

Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide

Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang
PDF
HTML
导出引用
  • 为了满足日益增加的集成光子器件设计的需求, 本文研究了一种铌酸锂/钠表面等离子体波导(LiNbO3/Na surface plasmonic waveguide, LNSPW), 并利用LNSPW构成电光可调的定向耦合器(directional coupling, DC). 利用有限元方法(finite element method, FEM)对波导的模式特性和耦合器的耦合特性进行了分析. 结果表明, 随着波导尺寸的增大, 传播长度可达约200 μm, 归一化有效模场面积小于0.4. 通过调节耦合间距(Wgap)、耦合长度(LC)和工作波长(λ)等参数, 铌酸锂钠表面等离子体波导构建的定向耦合结构可实现3 dB耦合. 当Wgap = 100 nm和LC = 17 μm时, DC在V0 = 53 V时可实现3 dB耦合, 且具有较好的方向性和隔离度. LNSPW的研究为实现可调的DC提供了一种可行的方案, 在集成电光可调器件研究领域有潜在的应用前景. 除此之外, LNSPW还可广泛应用于非线性光学、光信号处理及光全息存储等领域.
    To meet the increasing demand of integrated photonic device design, a LiNbO3/Na surface plasmonic waveguide (LNSPW) is demonstrated, and a directional coupler (DC) based on the LNSPW is also studied. The mode characteristics of the LNSPW and the coupling performances of the DC are simulated by the finite element method (FEM). There are four modes in the LNSPW when its width (w1) and the thickness (h1) are less than 600 nm and 400 nm, respectively. The number of the modes in the LNSPW increases with waveguide size increasing. To achieve the single-mode propagation, w1 and h1 are chosen to be 300 nm and 200 nm, respectively. The effective refractive index (neff), propagation length (Lp), and normalized effective mode area (Aeff/A0) are analyzed with different dimensional parameters of the LNSPW. The value of Lp is ~200 μm, and Aeff/A0 is less than 0.4. In order to demonstrate the electro-optic tunable performance, the normalized output power (Pnorm) values of the DC are calculated based on the LNSPWs with different values of coupling interval (Wgap), coupling length (LC), and operating wavlength (λ). The Pnorm values of the output ports (port 2 and port 3) vary with Wgap and LC. Owing to the electro-optic effect of LiNbO3 (LN), Pnorm of the DC can be adjusted by changing the applied electrostatic voltage (V0). The influence of V0 on Pnorm increases when Wgap is larger than 100 nm and LC is greater than 12 μm. The larger the value of LC and Wgap, the stronger the effect of V0 on Pnorm is, but Pnorm values from two output ports decrease with Wgap and LC increasing. A 3 dB coupler can be achieved by changing V0 to 53 V when Wgap = ~100 nm, LC = ~17 μm, and λ = 1.55 μm, and has good directivity and isolation. The LNSPW provides a feasible scheme to realize the tunable DC, and has potential applications in integratable electro-optic tuanble devices, nonlinear optics, optical signal processing, and optical holographic storage.
      通信作者: 刘恒, hengmaggie@163.com
    • 基金项目: 国家自然科学基金(批准号: 62075057)和河南师范大学博士启动课题(批准号: gd17167, 5101239170010)资助的课题
      Corresponding author: Liu Heng, hengmaggie@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075057) and the Doctoral Program of Henan Normal University, China (Grant Nos. gd17167, 5101239170010)
    [1]

    Zhang Q, Li M, Xu J, Lin Z J, Yu H F, Wang M, Fang Z W, Cheng Y, Gong Q H, Li Y 2019 Photonics Res. 7 503Google Scholar

    [2]

    刘时杰, 郑远林, 陈险峰 2021 光学学报 41 0823013Google Scholar

    Liu S J, Zheng Y L, Chen X F 2021 Acta Opt. Sin. 41 0823013Google Scholar

    [3]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [4]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar

    [5]

    Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V 2009 Laser Photonics Rev. 3 301Google Scholar

    [6]

    李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [7]

    Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar

    [8]

    Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A, Bakhru H 1998 Appl. Phys. Lett. 73 2293Google Scholar

    [9]

    Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M 2014 Opt. Express 22 30924Google Scholar

    [10]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [11]

    Lin J T, Xu Y X, Fang Z W, Wang M, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar

    [12]

    Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [13]

    乔玲玲, 汪旻, 伍荣波, 方致伟, 林锦添, 储蔚, 程亚 2021 光学学报 41 0823012Google Scholar

    Qiao L L, Wang M, Wu R B, Fang Z W, Lin J T, Chu W, Cheng Y 2021 Acta Opt. Sin. 41 0823012Google Scholar

    [14]

    Wu R B, Wang M, Xu J, Qi J, Chu W, Fang Z W, Zhang J H, Zhou J X, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Nanomaterials 8 910Google Scholar

    [15]

    Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [16]

    Jia Y C, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar

    [17]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar

    [18]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [19]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [20]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [21]

    Prucha E J, Palik E D 1998 Handbook of Optical Constants of Solids II (London: Academic Press) p354

    [22]

    Wang Y, Yu J Y, Mao Y F, Chen J, Wang S, Chen H Z, Zhang Y, Wang S Y, Chen X J, Li T, Zhou L, Ma R M, Zhu S N, Cai W S, Zhu J 2020 Nature 581 401Google Scholar

    [23]

    Tsilipakos O, Yioultsis T V, Kriezis E E 2009 J. Hazard Mater. 106 93109

    [24]

    Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F, Hwang C S 2020 Nat. Mater. 19 1188Google Scholar

  • 图 1  (a) x-y平面内的LNSPW截面图; (b) 电势分布图, V0 = 100 V

    Fig. 1.  (a) Cross section of the LNSPW in the x-y plane; (b) potential distribution as V0 = 100 V.

    图 2  (a) 不同λ时, Na的折射率实部Re(nNa)和虚部Im(nNa). 模场分布图 (b) 基模(FM); (c) 二阶模(SM); (d) 三阶模(TM); (e) 类传导模(GM). (f)FM沿y轴的模场分布

    Fig. 2.  (a) Re(nNa) and Im(nNa) of Na with different λ. Mode field distributions of the (b) FM, (c) SM, (d) TM and (e) GM; (f) mode field distribution of the FM along y axis.

    图 3  Re(neff)随不同w1h1的变化规律 (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm

    Fig. 3.  Re(neff) as functions of w1 and h1: (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm.

    图 4  LPw1h1的变化规律 (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm

    Fig. 4.  LP with different w1 and h1: (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm.

    图 5  Aeff/A0w1h1的变化规律 (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm

    Fig. 5.  Influences of w1 and h1 on Aeff/A0: (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm.

    图 6  (a) LNSPW构成的电光可调DC示意图; (b) DC x-y截面; (c) DC x-z截面

    Fig. 6.  (a) Schematic of the electro-optic tunable DC based on the LNSPW: (b) DC cross section in x-y plane; (c) DC cross section in x-z plane.

    图 7  (a) LNSPW构成的DC端口2和端口3的PnormLCV0的变化图; (b) LC = 17 μm时, 端口2和端口3的Pnorm

    Fig. 7.  Pnorm of the Port 2 and Port 3 in the DC based on the LNSPW (a) with different LC and V0, and (b) with different V0 as LC = 17 μm.

    图 8  LNSPW构成的DC的电场分布图 (a) V0 = 0 V; (b) V0 = 53 V; (c) V0 = 90 V

    Fig. 8.  Mode field distributions of the DC based on the LNSPW: (a) V0 = 0 V; (b) V0 = 53 V; (c) V0 = 90 V.

    图 9  不同LCV0时, WgapPnorm的影响 (a) LC = 5.3 μm; (b) LC = 12 μm; (c) LC = 17 μm

    Fig. 9.  Pnorm as a function of Wgap with different LC and V0: (a) LC = 5.3 μm; (b) LC = 12 μm; (c) LC = 17 μm.

    图 10  不同λ时, Pnorm随(a) LC和(b) Wgap的变化

    Fig. 10.  Pnorm as functions of (a) LC and (b) Wgap with different λ.

    图 11  V0定向耦合的性能指标的影响 (a) SR和IL; (b) LTHP, LTP, LDILIS

    Fig. 11.  Influences of V0 on the performances of the DC based on the LNSPW: (a) SR and IL; (b) LTHP, LTP, LDI, and LIS.

  • [1]

    Zhang Q, Li M, Xu J, Lin Z J, Yu H F, Wang M, Fang Z W, Cheng Y, Gong Q H, Li Y 2019 Photonics Res. 7 503Google Scholar

    [2]

    刘时杰, 郑远林, 陈险峰 2021 光学学报 41 0823013Google Scholar

    Liu S J, Zheng Y L, Chen X F 2021 Acta Opt. Sin. 41 0823013Google Scholar

    [3]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [4]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar

    [5]

    Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V 2009 Laser Photonics Rev. 3 301Google Scholar

    [6]

    李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [7]

    Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar

    [8]

    Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A, Bakhru H 1998 Appl. Phys. Lett. 73 2293Google Scholar

    [9]

    Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M 2014 Opt. Express 22 30924Google Scholar

    [10]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [11]

    Lin J T, Xu Y X, Fang Z W, Wang M, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar

    [12]

    Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [13]

    乔玲玲, 汪旻, 伍荣波, 方致伟, 林锦添, 储蔚, 程亚 2021 光学学报 41 0823012Google Scholar

    Qiao L L, Wang M, Wu R B, Fang Z W, Lin J T, Chu W, Cheng Y 2021 Acta Opt. Sin. 41 0823012Google Scholar

    [14]

    Wu R B, Wang M, Xu J, Qi J, Chu W, Fang Z W, Zhang J H, Zhou J X, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Nanomaterials 8 910Google Scholar

    [15]

    Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [16]

    Jia Y C, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar

    [17]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar

    [18]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [19]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [20]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [21]

    Prucha E J, Palik E D 1998 Handbook of Optical Constants of Solids II (London: Academic Press) p354

    [22]

    Wang Y, Yu J Y, Mao Y F, Chen J, Wang S, Chen H Z, Zhang Y, Wang S Y, Chen X J, Li T, Zhou L, Ma R M, Zhu S N, Cai W S, Zhu J 2020 Nature 581 401Google Scholar

    [23]

    Tsilipakos O, Yioultsis T V, Kriezis E E 2009 J. Hazard Mater. 106 93109

    [24]

    Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F, Hwang C S 2020 Nat. Mater. 19 1188Google Scholar

  • [1] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [2] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [3] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导. 物理学报, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [5] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [6] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究. 物理学报, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [7] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [8] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发. 物理学报, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [9] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析. 物理学报, 2014, 63(7): 077801. doi: 10.7498/aps.63.077801
    [10] 洪霞, 郭雄彬, 方旭, 李衎, 叶辉. 基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究. 物理学报, 2013, 62(17): 178502. doi: 10.7498/aps.62.178502
    [11] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [12] 肖金标, 李文亮, 夏赛赛, 孙小菡. 梯形截面硅基水平多槽纳米线定向耦合器全矢量分析. 物理学报, 2012, 61(12): 124216. doi: 10.7498/aps.61.124216
    [13] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [14] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [15] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [16] 朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴. 一种实现光子晶体波导定向耦合型多路光均分的新方法. 物理学报, 2009, 58(2): 1014-1019. doi: 10.7498/aps.58.1014
    [17] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究. 物理学报, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  3379
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-11-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-05

/

返回文章
返回