搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p型BixSb2–xTe3–ySey基材料低温热电性能

钟文龙 李珺杰 刘可可 郜顺奇 吴明轩 李貌 苏贤礼 张清杰 唐新峰

引用本文:
Citation:

p型BixSb2–xTe3–ySey基材料低温热电性能

钟文龙, 李珺杰, 刘可可, 郜顺奇, 吴明轩, 李貌, 苏贤礼, 张清杰, 唐新峰

Low-temperature thermoelectric properties of p-type BixSb2–xTe3–ySey-based materials

ZHONG Wenlong, LI Junjie, LIU Keke, GAO Shunqi, WU Mingxuan, LI Mao, SU Xianli, ZHANG Qingjie, TANG Xinfeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Bi2Te3基化合物是目前唯一实现商业化应用的热电材料, 但对其研究大多都集中于室温及以上温区, 针对室温以下的低温区研究较少. 本工作系统研究了Bi/Sb相对含量调控和Se固溶对BixSb2–xTe3和Bi0.4Sb1.6Te3–ySey化合物在低温区电热输运性能的影响规律. 在BixSb2–xTe3体系中, 固溶Bi2Te3减小了材料的带隙, 并降低了SbTe反位缺陷的浓度, 使材料的峰值ZT温度向低温区偏移, 但显著增强的载流子点缺陷散射, 导致材料的载流子迁移率和电传输性能劣化, 功率因子从Bi0.4Sb1.6Te3的4.58 mW/(m·K2)下降至Bi0.58Sb1.42Te3的1.12 mW/(m·K2). 为了进一步提升材料低温区热电性能, 选取Bi0.4Sb1.6Te3为基体, 在Te位固溶Se, Se的固溶使SeTe+BiSb的缺陷形成能更低, 抑制了反位缺陷SbTe的产生, 降低了材料的载流子浓度. 少量Se固溶使材料能保持优异的电传输性能同时, 显著增强了点缺陷声子散射, 降低材料的晶格热导率, 在宽温区范围提升了材料的热电性能. Bi0.4Sb1.6Te3材料在220 K时, ZT值为0.80, 在350 K时ZT峰值为1.17, 少量Se固溶Bi0.4Sb1.6Te2.97Se0.03样品在220 K时ZT值增至0.93. 在350 K时ZT峰值达到1.31, 相比分别提升了约16%和12%. 该研究为BiSbTe基热电材料低温区热电性能提升提供了重要的指导, 对BiSbTe基热电材料低温区的应用具有重要意义.
    Bi2Te3-based compounds are the thermoelectric materials available only commercially, but the research on their low-temperature performances below 300 K are still insufficient. The influences of Bi/Sb ratio modulation and Se substitution on the electrical and thermal transport properties of BixSb2–xTe3 and Bi0.4Sb1.6Te3–ySey materials are systematically investigated in this work, aiming to optimize their thermoelectric performance in cryogenic regions through combined bandgap tuning and defect engineering. Materials are synthesized using a melt-quenching and spark plasma sintering process, and then phase analysis is conducted via X-ray diffraction and microstructural characterization by electron probe microanalysis. First-principles calculations and Hall effect measurements are used to investigate their defect formation mechanisms and carrier transport behaviors. In the BixSb2–xTe3 system, the increase of Bi content reduces the bandgap from 0.168 eV for Bi0.4Sb1.6Te3 to 0.113 eV for Bi0.58Sb1.42Te3, shifting the peak ZT temperature to lower ranges. However, the enhancement of alloy scattering leads the carrier mobility to decrease from 332 to 109 cm2/(V·s) and power factor to fall from 4.58 to 1.12 mW/(m·K2). To solve this problem, Se is substituted for the Te lattice of Bi0.4Sb1.6Te3. First-principles calculations reveal that the Se substitution reduces the formation energy of SeTe + BiSb complex, thus effectively suppressing SbTe antisite defects. This will result in the carrier concentration decreasing from 3.32×1019 to 2.64×1019 cm–3 while maintaining high mobility at 279 cm2/(V·s). Concurrently, Se-induced point defects enhance phonon scattering, reducing lattice thermal conductivity from 0.46 to 0.38 W/(m·K), a decrease of 17%. Bi0.4Sb1.6Te2.97Se0.03 sample achieves a ZT value of 0.93 at 220 K, which is 16% higher than the pristine Bi0.4Sb1.6Te3 sample with a ZT value of 0.80. The peak ZT increases from 1.17 to 1.31 at 350 K, an increase of 12%. These improvements arise from the synergistic effects of band engineering, where flattened valence band edges increase effective mass, and defect engineering, where antisite defects and strengthens phonon scattering are suppressed. This work provides a dual optimization strategy for BiSbTe-based materials, i.e. balancing bandgap reduction by controlling defects to improve cryogenic performance. The findings are particularly significant for the applications of BiSbTe-based materials in infrared detectors and multistage thermoelectric cooling systems.
  • 图 1  (a)制备的BixSb2–xTe3样品粉末X射线衍射图谱; (b) 制备的Bi0.4Sb1.6Te3-ySey样品粉末X射线衍射图谱; (c) Bi0.4Sb1.6Te2.88Se0.12样品表面背散射电子图像(单位原子百分比)以及对应区域Bi, Sb, Se和Te等元素的面分布图像

    Fig. 1.  (a) Powder X-ray diffraction patterns of the prepared BixSb2–xTe3 samples; (b) powder X-ray diffraction patterns of the prepared Bi0.4Sb1.6Te3–ySey samples; (c) backscattered electron image of the surface of the Bi0.4Sb1.6Te2.88Se0.12 sample and the planar distribution images of elements for Bi, Sb, Se and Te in the corresponding regions.

    图 2  BixSb2–xTe3样品的电热输运性能 (a) 电导率; (b) Seebeck系数; (c) 功率因子; (d) 总热导率; (e) 总热导率减电子热导率; (f) ZT

    Fig. 2.  Temperature-dependent electronic transport properties for BixSb2–xTe3 samples: (a) Electrical conductivity; (b) Seebeck coefficient; (c) power factor; (d) total thermal conductivity; (e) thermal conductivity κκe; (f) ZT.

    图 3  Bi0.4Sb1.6Te3-ySey样品的电热输运性能 (a) 电导率; (b) Seebeck系数; (c) 功率因子; (d) 总热导率; (e) 总热导率减电子热导率; (f) ZT

    Fig. 3.  Temperature-dependent electronic transport properties for Bi0.4Sb1.6Te3–ySey samples: (a) Electrical conductivity; (b) Seebeck coefficient; (c) power factor; (d) total thermal conductivity; (e) thermal conductivity κκe; (f) ZT.

    图 4  (a), (b) 250 K时载流子浓度和载流子迁移率随Bi, Se含量的变化; (c) 250 K时样品载流子浓度与Seebeck系数的关系; (d) 250 K时样品载流子迁移率与载流子浓度的关系

    Fig. 4.  (a), (b) Hall carrier mobility and concentration change with respect to the Bi, Se content; (c) Seebeck coefficients as a function of the charge carrier concentration at 250 K; (d) the carrier mobility as a function of the charge carrier concentration at 250 K.

    图 5  Bi2Te3基化合物中不同的点缺陷形成能 (a) BixSb2–xTe3固溶体; (b) Bi0.4Sb1.6Te3–ySey固溶体. (c) BixSb2–xTe3–ySey固溶体缺陷演化过程示意图

    Fig. 5.  Theoretically calculated formation energies of different point defects in different solid solution: (a) BixSb2–xTe3; (b) Bi0.4Sb1.6Te3–ySey. (c) Defect evolution process for BixSb2–xTe3–ySey solid solution.

  • [1]

    Han Y N, Zhang A K 2022 Sci. Rep. 12 2349Google Scholar

    [2]

    Tong X, Qiu J, Li J P, Xie K Y, Chen J Y, Huai Y, Li S F, Huang Y B, Dong W 2024 Cryogenics 143 103929Google Scholar

    [3]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021 Science 373 556Google Scholar

    [4]

    Rogalski A, Martyniuk P, Kopytko M, Hu W D 2021 Appl. Sci. 11 501Google Scholar

    [5]

    Tang J, Ni H, Peng R L, Wang N, Zuo L 2023 J. Power. Sources 562 232785Google Scholar

    [6]

    Sun J C, Zhang Y, Fan Y T, Tang X F, Tan G J 2022 Chem. Eng. J. 431 133699Google Scholar

    [7]

    Peng G Y, Hu L, Qu W B, Zhang C L, Li S R, Liu Z Y, Liu J C, Guo S W, Xiao Y, Gao Z B, Zhang Z, Zhang Y, Wu H J, Pennycook S J, Sun J, Ding X D 2023 Interdiscip. Mater. 2 30

    [8]

    Huang Y L, Lyu T, Zeng M T, Wang M R, Yu Y, Zhang C H, Liu F S, Hong M, Hu L P 2024 Interdiscip. Mater. 3 607

    [9]

    Hu C L, Xia K Y, Fu C G, Zhao X B, Zhu T J 2022 Energy Environ. Sci. 15 1406Google Scholar

    [10]

    Zhang Y, Sun J C, Shuai J, Tang X F, Tan G J 2021 Mater. Today Phys. 19 100405

    [11]

    Liu Z T, Hong T, Xu L Q, Wang S N, Gao X, Chang C, Ding X D, Xiao Y, Zhao L D 2023 Interdiscip. Mater. 2 161

    [12]

    Choi S, Han U, Cho H, Lee H 2018 Appl. Therm. Eng. 132 560Google Scholar

    [13]

    Reddy B V K, Barry M, Li J, Chyu M K 2014 Energy Conv. Manag. 77 458Google Scholar

    [14]

    Yang D W, Xing Y B, Wang J, Hu K, Xiao Y N, Tang K C, Lyu J N, Li J H, Liu Y T, Zhou P, Yu Y, Yan Y G, Tang X F 2024 Interdiscip. Mater. 3 326

    [15]

    Feng J H, Li J, Liu R H 2024 Nano Energy 126 109651Google Scholar

    [16]

    Lyu J N, Yang D W, Liu Y T, Li J H, Zhang Z N, Li Z M, Liu M Y, Liu W, Ren Z G, Liu H J, Wu J S, Tang X F, Yan Y G 2024 ACS Appl. Mater. Interfaces 16 16505Google Scholar

    [17]

    Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454Google Scholar

    [18]

    Luo T T, Wang S Y, Li H, Tang X F 2013 Intermetallics 32 96Google Scholar

    [19]

    Chen Z, Zhou M, Huang R J, Song C M, Zhou Y, Li L F 2012 J. Alloy. Compd. 511 85Google Scholar

    [20]

    Combe E, Funahashi R, Takeuchi T, Barbier T, Yubuta K 2017 J. Alloy. Compd. 692 563Google Scholar

    [21]

    Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000 Science 287 1024Google Scholar

    [22]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [23]

    李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰 2024 物理学报 73 097101Google Scholar

    Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024 Acta Phys. Sin. 73 097101Google Scholar

    [24]

    李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 物理学报 72 097101Google Scholar

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin. 72 097101Google Scholar

    [25]

    Chen S, Luo T T, Yang Z, Zhong S L, Su X L, Yan Y G, Wu J S, Poudeu P F, Zhang Q J, Tang X F 2024 Mater. Today Phys. 46 101524Google Scholar

    [26]

    鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023无机材料学报 38 1331

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1311

    [27]

    Goldsmid H J, Sharp J W 1999 J. Electro. Mater. 28 869Google Scholar

    [28]

    Yang J, Morelli D T, Meisner G, Chen W, Dyck J, Uher C 2002 Phys. Rev. B 65 094115Google Scholar

    [29]

    Wu G, Zhang Q, Fu Y T, Tan X J, Noudem J G, Zhang Z W, Cui C, Sun P, Hu H Y, Wu J H, Liu G Q, Jiang J 2023 Adv. Funct. Mater. 33 2305686Google Scholar

    [30]

    Lee K H, Kim S I, Lim J C, Cho J Y, Yang H, Kim H S 2022 Adv. Funct. Mater. 32 2203852Google Scholar

    [31]

    Xu B, Xia Q, Ma S S, Zhang J, Wang Y S, Li J F, Gu Z H, Yi L 2022 FlatChem 34 100394Google Scholar

    [32]

    Saberi Y, Sajjadi S A 2022 J. Alloy. Compd. 904 163918Google Scholar

  • [1] 郜顺奇, 李珺杰, 陈硕, 鄢永高, 苏贤礼, 张清杰, 唐新峰. p型Bi2Te3基材料的垂直转角挤压制备与热电性能. 物理学报, doi: 10.7498/aps.74.20250152
    [2] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能. 物理学报, doi: 10.7498/aps.73.20240098
    [3] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究. 物理学报, doi: 10.7498/aps.72.20230791
    [4] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, doi: 10.7498/aps.72.20230231
    [5] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.71.20221247
    [6] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, doi: 10.7498/aps.71.20211843
    [7] 唐昊, 白辉, 吕嘉南, 华思恒, 鄢永高, 杨东旺, 吴劲松, 苏贤礼, 唐新峰. 表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能. 物理学报, doi: 10.7498/aps.71.20220549
    [8] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长. 物理学报, doi: 10.7498/aps.70.20211090
    [9] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, doi: 10.7498/aps.68.20190281
    [10] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, doi: 10.7498/aps.66.218103
    [11] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, doi: 10.7498/aps.64.047201
    [12] 肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云. 能带工程对射频功率SiGe异质结双极晶体管热性能的改善. 物理学报, doi: 10.7498/aps.60.044402
    [13] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, doi: 10.7498/aps.59.8927
    [14] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究. 物理学报, doi: 10.7498/aps.59.7314
    [15] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析. 物理学报, doi: 10.7498/aps.58.1212
    [16] 刘延辉, 李静波, 梁敬魁, 骆 军, 纪丽娜, 张继业, 饶光辉. La0.1Bi0.9-xEuxFeO3化合物的结构与性能研究. 物理学报, doi: 10.7498/aps.57.6476
    [17] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能. 物理学报, doi: 10.7498/aps.56.7309
    [18] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究. 物理学报, doi: 10.7498/aps.55.4843
    [19] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, doi: 10.7498/aps.55.4849
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  342
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-06
  • 修回日期:  2025-02-26
  • 上网日期:  2025-03-13

/

返回文章
返回