搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有变革性特征的红外光电探测器

胡伟达 李庆 陈效双 陆卫

引用本文:
Citation:

具有变革性特征的红外光电探测器

胡伟达, 李庆, 陈效双, 陆卫

Recent progress on advanced infrared photodetectors

Hu Wei-Da, Li Qing, Chen Xiao-Shuang, Lu Wei
PDF
HTML
导出引用
  • 现代红外光电探测技术有着近八十年的历史. 从二战期间第一个可实用PbS红外探测器到第三代红外光电探测器概念的提出, 红外光电探测技术经历了翻天覆地的变化. 以碲镉汞、锑化铟、铟镓砷为代表的传统红外光电探测器已在军事、遥感、通信、生命科学和宇宙探索等领域发挥着至关重要的作用. 随着人类对光电探测不断增长的需求, 尤其近几年来在人工智能、大数据、智慧城市等方面对红外信息的探测和智能感知有着强烈的需求, 大幅降低红外光电探测器的尺寸(size)、重量(weight)、功耗(power)和价格(price), 以及提高探测器的性能(performance)迫在眉睫. 因此, 要满足上述需求, 必须要寻找具有变革性特征的红外光电探测器件. 当前红外探测器正处于新旧更迭的时代, 一大批新型红外光电探测器涌出. 本文系统地介绍了一些具有变革性特征的红外探测器前沿内容, 主要包括: 人工光子微结构调控的新型红外探测器、基于能带工程的红外探测器、新型低维材料红外探测器, 以及传统红外探测器的新方向. 最后, 展望了红外光电探测未来发展面临的机遇和挑战.
    Modern infrared detector technology has a history of nearly eighty years. Since the first PbS photodiode was put into use during the World War II, infrared detectors have achieved significant progress, even the third-generation infrared systems have been proposed. In the past decades, the traditional infrared detectors represented by HgCdTe, InSb and InGaAs have been widely applied in military, remote sensing, communication, bioscience, and space exploration. However, the increasing applications demand higher performance infrared detectors. Especially in recent years, the intelligent infrared detection technique was strongly demanded in many high-tech fields such as artificial intelligence, virtual reality systems and smart city. Therefore, the fabricating of infrared detection systems with smaller size, lighter weight, lower power, higher performance and lower price has become an urgent task. At present, the infrared photodetectors are in an age of rapid change, and many new type of advanced infrared photodetectors come to the fore quickly. For the purpose of summarizing these detectors, they are reviewed covering four parts: microstructure coupled infrared detector, infrared detector based on band engineering, new type of low-dimensional material infrared detector, and new directions for traditional infrared detectors. In the infrared detection systems, these photodetectors can be fully used for their prominent performance. The microstructure coupled infrared detector can improve chip integration with high quantum efficiency. Precise design of band structure will raise the operating temperature for mid and long wavelenth infrared photodetectors. Owing to the unique structures and physical properties, low-dimensional material infrared photodetectors have shown their potential application value in flexibility and room temperature detection systems. The ability of avalanche photodetector to detect the extremely weak signal makes it possible using in the frontier science such as quantum private communication and three-dimensional radar imaging systems. The device based on hot electron effect provides a new idea for far infrared detection. The barrier detectors will reduce the manufacturing cost of traditional materials and the design is also very illuminating for other new materials. In this review, firstly we present the history of infrared photodetectors in short. Then the mechanism and achievements of the advanced infrared photodetectors are introduced in detail. Finally, the opportunities and challenges of infrared detection are summarized and predicted.
      通信作者: 胡伟达, wdhu@mail.sitp.ac.cn ; 陆卫, luwei@mail.sitp.ac.cn
    • 基金项目: 国家杰出青年科学基金(批准号: 61725505)、国家自然科学基金重点项目(批准号: 11734016)、国家自然科学基金创新群体(批准号: 61521005)和上海市优秀学术带头人计划(批准号: 19XD1404100)资助的课题.
      Corresponding author: Hu Wei-Da, wdhu@mail.sitp.ac.cn ; Lu Wei, luwei@mail.sitp.ac.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61725505), the Key Program of the National Natural Science Foundation of China (Grant No. 11734016), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61521005), and the Program of Shanghai Subject Chief Scientist, China (Grant No. 19XD1404100).
    [1]

    Herschel W 1800 Philos. Trans. Roy. Soc. London 90 284Google Scholar

    [2]

    Rogalski A 2012 Opt. Electron. Rev. 20 279

    [3]

    Becquerel M 1839 Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 9 561

    [4]

    Smith W 1873 Nature 7 303Google Scholar

    [5]

    Case T W 1917 Phys. Rev. 9 305Google Scholar

    [6]

    Lange B 1930 Phys. Zeitschr 31 139

    [7]

    Lange B 1931 Naturwissenschaften 19 525Google Scholar

    [8]

    Lovell D 1969 Am. J. Phys. 37 467Google Scholar

    [9]

    Avery D, Goodwin D, Lawson W, Moss T 1954 Proc. Phys. Soc.Section B 67 761Google Scholar

    [10]

    Lawson W, Nielsen S, Putley E, Young A 1959 J.Phys. Chem. Solids 9 325Google Scholar

    [11]

    汤定元 1991 激光与红外 21 5

    Tang D Y 1991 Laser & Infrared 21 5

    [12]

    茅文英, 褚君浩, 李言谨, 王子孟, 方家熊 1994 红外与毫米波学报 13 352

    Mao W Y, Chu J H, Li Y J, Wang Z M, Fang J X 1994 J. Infrared Millim.Waves 13 352

    [13]

    杨建荣, 何进 1994 红外与毫米波学报 13 191

    Yang J R, He J 1994 J. Infrared Millim.Waves 13 191

    [14]

    Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101Google Scholar

    [15]

    杨建荣 2012 碲镉汞材料物理与技术 第一版 (北京: 国防工业出版社) 第3—7页

    Yang J R 2012 Physics and Technology of HgCdTe Materials (1st Ed.) (Beijing: National Defense Industry Press) pp3−7 (in Chinese)

    [16]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [17]

    Lin H, Cheung H Y, Xiu F, Wang F, Yip S, Han N, Hung T, Zhou J, Ho J C, Wong C Y 2013 J. Mater. Chem. A 1 9942Google Scholar

    [18]

    Cansizoglu H, Bartolo-Perez C, Gao Y, Devine E P, Ghandiparsi S, Polat K G, Mamtaz H H, Yamada T, Elrefaie A F, Wang S Y 2018 Photon. Res. 6 734Google Scholar

    [19]

    胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25Google Scholar

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25Google Scholar

    [20]

    Krishna S, Posani K T, Tripathi V, Annamalai S 2005 The 18th Annual Meeting of the IEEE Sydney, Australia October 22−28, 2005 p909

    [21]

    Hiralal P, Chien C, Lal N N, Abeygunasekara W, Kumar A, Butt H, Zhou H, Unalan H E, Baumberg J J, Amaratunga G A 2014 Nanoscale 6 14555Google Scholar

    [22]

    Wehner J, Smith E, Venzor G, Smith K, Ramirez A, Kolasa B, Olsson K, Vilela M 2011 J. Electron. Mater. 40 1840Google Scholar

    [23]

    Pinkie B, Schuster J, Bellotti E 2013 Opt. Lett. 38 2546Google Scholar

    [24]

    Gao Y, Cansizoglu H, Polat K G, Ghandiparsi S, Kaya A, Mamtaz H H, Mayet A S, Wang Y, Zhang X, Yamada T 2017 Nat. Photon. 11 301Google Scholar

    [25]

    Novotny L, Hecht B 2012 Principles of Nano-Optics (Cambridge: Cambridge University Press)

    [26]

    Ritchie R 1957 Phys. Rev. 106 874Google Scholar

    [27]

    Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332

    [28]

    Sommerfeld A 1899 Annalen der Physik 303 233

    [29]

    Wood R W 1902 Philos. Mag. 4 396Google Scholar

    [30]

    Kretschmann E, Raether H 1968 Zeitschrift für Naturforschung A 23 2135

    [31]

    Bouchon P, Pardo F, Portier B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J L 2011 Appl. Phys. Lett. 98 191109Google Scholar

    [32]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D, Lin S Y 2010 Nano Lett. 10 1704Google Scholar

    [33]

    Thio T, Pellerin K M, Linke R A, Lezec H J, Ebbesen T W 2001 Opt. Lett. 26 1972Google Scholar

    [34]

    Ren F F, Ang K W, Ye J, Yu M, Lo G Q, Kwong D L 2011 Nano Lett. 11 1289Google Scholar

    [35]

    Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8

    [36]

    Laux E, Genet C, Skauli T, Ebbesen T W 2008 Nat. Photon. 2 161Google Scholar

    [37]

    Mie G 1908 Annalen der Physik 330 377

    [38]

    Jackson J D 2012 Classical Electrodynamics (New York: John Wiley & Sons)

    [39]

    Novotny L, van Hulst N 2011 Nature Photon. 5 83Google Scholar

    [40]

    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W 2015 Small 11 2392Google Scholar

    [41]

    Zhu Z, Zou Y, Hu W, Li Y, Gu Y, Cao B, Guo N, Wang L, Song J, Zhang S 2016 Adv. Funct. Mater. 26 1793Google Scholar

    [42]

    Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J 2017 ACS Nano 11 9854Google Scholar

    [43]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [44]

    Chalabi H, Schoen D, Brongersma M L 2014 Nano Lett. 14 1374Google Scholar

    [45]

    Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P, Halas N J 2012 Nano Lett. 12 3808Google Scholar

    [46]

    Brongersma M L, Halas N J, Nordlander P 2015 Nature Nanotechnol. 10 25Google Scholar

    [47]

    Christopher P, Moskovits M 2017 Ann. Rev. Phys. Chem. 68 379Google Scholar

    [48]

    West L, Eglash S 1985 Appl. Phys. Lett. 46 1156Google Scholar

    [49]

    Levine B, Malik R, Walker J, Choi K, Bethea C, Kleinman D, Vandenberg J 1987 Appl. Phys. Lett. 50 273Google Scholar

    [50]

    Smith D, Mailhiot C 1987 J. Appl. Phys. 62 2545Google Scholar

    [51]

    Gendron L, Carras M, Huynh A, Ortiz V, Koeniguer C, Berger V 2004 Appl. Phys. Lett. 85 2824Google Scholar

    [52]

    Giorgetta F R, Baumann E, Hofstetter D, Manz C, Yang Q, Köhler K, Graf M 2007 Appl. Phys. Lett. 91 111115Google Scholar

    [53]

    Giorgetta F R, Baumann E, Théron R, Pellaton M, Hofstetter D, Fischer M, Faist J 2008 Appl. Phys. Lett. 92 121101Google Scholar

    [54]

    Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Beere H E, Ritchie D A, Linfield E, Davies A G 2009 IEEE J. Quantum Electron. 45 1039Google Scholar

    [55]

    Vardi A, Bahir G, Guillot F, Bougerol C, Monroy E, Schacham S, Tchernycheva M, Julien F 2008 Appl. Phys. Lett. 92 011112Google Scholar

    [56]

    Li L, Xiong D, Wen J, Li N, Zhu Z 2016 Infrared Phys. Technol. 79 45Google Scholar

    [57]

    Hofstetter D, Giorgetta F R, Baumann E, Yang Q, Manz C, Köhler K 2008 Appl. Phys. Lett. 93 221106Google Scholar

    [58]

    Li L, Xiong D, Tang Z, Wen J, Li N, Chen P, Zhu Z 2017 J. Appl. Phys. 121 083102Google Scholar

    [59]

    李梁 2017 博士学位论文(上海: 华东师范大学)

    Li L 2017 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [60]

    Dougakiuchi T, Fujita K, Hirohata T, Ito A, Hitaka M, Edamura T 2016 Appl. Phys. Lett. 109 261107Google Scholar

    [61]

    Li J V, Yang R Q, Hill C J, Chuang S L 2005 Appl. Phys. Lett. 86 101102Google Scholar

    [62]

    Yang R Q, Tian Z, Cai Z, Klem J, Johnson M B, Liu H 2010 J. Appl. Phys. 107 054514Google Scholar

    [63]

    Yang R Q, Tian Z, Klem J, Mishima T D, Santos M B, Johnson M B 2010 Appl. Phys. Lett. 96 063504Google Scholar

    [64]

    Zhou Y, Chen J, Xu Z, He L 2016 Semicond. Sci. Technol. 31 085005Google Scholar

    [65]

    Fang H H, Hu W D 2017 Adv. Sci. 4 1700323Google Scholar

    [66]

    Kufer D, Konstantatos G 2016 ACS Photon. 3 2197Google Scholar

    [67]

    Kufer D, Lasanta T, Bernechea M, Koppens F H L, Konstantatos G 2016 ACS Photon. 3 1324Google Scholar

    [68]

    Sun Z, Liu Z, Li J, Tai G A, Lau S P, Yan F 2012 Adv. Mater. 24 5878Google Scholar

    [69]

    Hu C, Dong D, Yang X, Qiao K, Yang D, Deng H, Yuan S, Khan J, Lan Y, Song H, Tang J 2017 Adv. Funct. Mater. 27 1603605Google Scholar

    [70]

    Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H L, Konstantatos G 2015 Adv. Mater. 27 176Google Scholar

    [71]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [72]

    Island J O, Blanter S I, Buscema M, van der Zant H S, Castellanos-Gomez A 2015 Nano Lett. 15 7853Google Scholar

    [73]

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano Lett. 16 4648Google Scholar

    [74]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia de Arquer F P, Gatti F, Koppens F H 2012 Nature Nanotechnol. 7 363Google Scholar

    [75]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photon. 11 366Google Scholar

    [76]

    Guo N, Hu W, Liao L, Yip S, Ho J C, Miao J, Zhang Z, Zou J, Jiang T, Wu S, Chen X, Lu W 2014 Adv. Mater. 26 8203Google Scholar

    [77]

    Fang H, Hu W, Wang P, Guo N, Luo W, Zheng D, Gong F, Luo M, Tian H, Zhang X, Luo C, Wu X, Chen P, Liao L, Pan A, Chen X, Lu W 2016 Nano Lett. 16 6416Google Scholar

    [78]

    Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar

    [79]

    Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066Google Scholar

    [80]

    Fukushima S, Shimatani M, Okuda S, Ogawa S, Kanai Y, Ono T, Matsumoto K 2018 Appl. Phys. Lett. 113 061102Google Scholar

    [81]

    Legrand J F 1989 Ferroelectrics 91 303

    [82]

    Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T 2015 Adv. Mater. 27 6575Google Scholar

    [83]

    Wu G, Wang X, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J, Zhang S 2016 Nanotechnology 27 364002Google Scholar

    [84]

    Huang H, Wang X, Wang P, Wu G, Chen Y, Meng C, Liao L, Wang J, Hu W, Shen H 2016 RSC Adv. 6 87416Google Scholar

    [85]

    Zheng D, Wang J, Hu W, Liao L, Fang H, Guo N, Wang P, Gong F, Wang X, Fan Z 2016 Nano Lett. 16 2548Google Scholar

    [86]

    Zheng D, Fang H, Wang P, Luo W, Gong F, Ho J C, Chen X, Lu W, Liao L, Wang J 2016 Adv. Funct. Mater. 26 7690Google Scholar

    [87]

    Sassi U, Parret R, Nanot S, Bruna M, Borini S, de Fazio D, Zhao Z, Lidorikis E, Koppens F, Ferrari A C 2017 Nat. Commun. 8 14311Google Scholar

    [88]

    Hsieh C Y, Chen Y T, Tan W J, Chen Y F, Shih W Y, Shih W H 2012 Appl. Phys. Lett. 100 113507Google Scholar

    [89]

    Wang L 2013 Science 342 614Google Scholar

    [90]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [91]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826Google Scholar

    [92]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H 2014 Sci. Rep. 4 3826

    [93]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [94]

    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T 2017 Nat. Commun. 8 1672Google Scholar

    [95]

    Han J, Wang J, Yang M, Kong X, Chen X, Huang Z, Guo H, Gou J, Tao S, Liu Z 2018 Adv. Mater. 30 1804020Google Scholar

    [96]

    Yang M, Wang J, Han J, Ling J, Ji C, Kong X, Liu X, Huang Z, Gou J, Liu Z 2018 ACS Photon. 5 3438Google Scholar

    [97]

    Yang M, Wang J, Zhao Y, He L, Ji C, Liu X, Zhou H, Wu Z, Wang X, Jiang Y 2019 ACS Nano 13 755

    [98]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lv Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254Google Scholar

    [99]

    Bullock J, Amani M, Cho J, Chen Y Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y L 2018 Nat. Photon. 12 601Google Scholar

    [100]

    Gibson S J, van Kasteren B, Tekcan B, Cui Y, van Dam D, Haverkort J E, Bakkers E P, Reimer M E 2019 Nature Nanotechnol. 14 473Google Scholar

    [101]

    Jiang X, Itzler M A, Ben-Michael R, Slomkowski K 2007 IEEE J. Selected Topics in Quantum Electronics 13 895Google Scholar

    [102]

    Lacaita A, Francese P, Zappa F, Cova S 1994 Appl. Opt. 33 6902Google Scholar

    [103]

    Kang Y, Mages P, Clawson A, Yu P, Bitter M, Pan Z, Pauchard A, Hummel S, Lo Y 2002 IEEE Photon.Technol. Lett. 14 1593Google Scholar

    [104]

    胡伟达, 李庆, 温洁, 王文娟, 陈效双, 陆卫 2018 红外技术 40 201

    Hu W D, Li Q, Wen J, Wang W J, Chen X S, Lu W 2018 Infrared Technol. 40 201

    [105]

    Singh A, Srivastav V, Pal R 2011 Opt. Laser Technol. 43 1358Google Scholar

    [106]

    Webb P P, McIntyre R J, Conradi J 1974 RCA Rev. 35 234

    [107]

    McIntyre R 1966 IEEE Trans. Electron Dev. 13 164

    [108]

    Wen J, Wang W, Li N, Li Z, Lu W 2017 Appl. Phys. Lett. 110 231105Google Scholar

    [109]

    Wen J, Wang W, Li N, Li Z, Lu W 2016 Opt. Quantum Electron. 48 150Google Scholar

    [110]

    Wen J, Wang W, Chen X, Li N, Chen X, Lu W 2018 J. Appl. Phys. 123 161530Google Scholar

    [111]

    Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, Wang N, Chen W, Cao T, Hu W, Sun D, Chen X, Miao F, Shi Y, Wang X 2019 Nature Nanotechnol. 14 217Google Scholar

    [112]

    Leveque G, Nasser M, Bertho D, Orsal B, Alabedra R 1993 Semicond. Sci. Technol. 8 1317Google Scholar

    [113]

    Beck J D, Wan C F, Kinch M A, Robinson J E 2001 Proc. SPIE 4454 188Google Scholar

    [114]

    Kinch M, Beck J, Wan C F, Ma F, Campbell J 2004 J. Electron. Mater. 33 630Google Scholar

    [115]

    Beck J, Woodall M, Scritchfield R, Ohlson M, Wood L, Mitra P, Robinson J 2007 Proc. SPIE 6542 654217Google Scholar

    [116]

    Beck J, Wan C, Kinch M, Robinson J, Mitra P, Scritchfield R, Ma F, Campbell J 2006 J. Electron. Mater. 35 1166Google Scholar

    [117]

    de Borniol E, Guellec F, Rothman J, Perez A, Zanatta J P, Tchagaspanian M, Castelein P, Destéfanis G, Peyrard J C, Pistone F 2010 Proc. SPIE 7660 76603DGoogle Scholar

    [118]

    de Borniol E D, Rothman J, Guellec F, Vojetta G, Destéfanis G, Pacaud O 2012 Opt. Eng. 51 061305Google Scholar

    [119]

    Kerlain A, Bonnouvrier G, Rubaldo L, Decaens G, Reibel Y, Abraham P, Rothman J, Mollard L, de Borniol E 2012 J. Electron. Mater. 41 2943Google Scholar

    [120]

    Qiu W C, Hu W D, Chen L, Lin C, Cheng X A, Chen X S, Lu W 2015 IEEE Trans. Electron Dev. 62 1926Google Scholar

    [121]

    Li Q, He J L, Hu W D, Chen L, Chen X S, Lu W 2018 IEEE Trans. Electron Dev. 65 572Google Scholar

    [122]

    Lao Y F, Perera A U, Li L, Khanna S, Linfield E, Liu H 2014 Nat. Photon. 8 412Google Scholar

    [123]

    Perera A U, Chauhan D, Lao Y F, Li L, Khanna S P, Linfield E H 2016 Proc. SPIE 9844 98440XGoogle Scholar

    [124]

    Esaev D, Rinzan M, Matsik S, Perera A 2004 J. Appl. Phys. 96 4588Google Scholar

    [125]

    Chauhan D, Perera A, Li L, Chen L, Linfield E 2018 Infrared Phys. Technol. 95 148Google Scholar

    [126]

    Maimon S, Wicks G 2006 Appl. Phys. Lett. 89 151109

    [127]

    Klipstein P 2008 Proc. SPIE 6940 69402UGoogle Scholar

    [128]

    Evirgen A, Abautret J, Perez J, Aït-Kaci H, Christol P, Fleury J, Sik H, Nedelcu A, Cluzel R, Cordat A 2014 Proc. SPIE 8993 899313Google Scholar

    [129]

    Perez J P, Evirgen A, Abautret J, Christol P, Cordat A, Nedelcu A 2015 Proc. SPIE 9370 93700NGoogle Scholar

    [130]

    Rodriguez J B, Plis E, Bishop G, Sharma Y, Kim H, Dawson L, Krishna S 2007 Appl. Phys. Lett. 91 043514Google Scholar

    [131]

    Haddadi A, Chevallier R, Dehzangi A, Razeghi M 2017 Appl. Phys. Lett. 110 101104Google Scholar

    [132]

    Hood A, Razeghi M, Aifer E H, Brown G J 2005 Appl. Phys. Lett. 87 151113Google Scholar

    [133]

    Haddadi A, Chen G, Chevallier R, Hoang A, Razeghi M 2014 Appl. Phys. Lett. 105 121104Google Scholar

    [134]

    Kim H, Plis E, Rodriguez J, Bishop G, Sharma Y, Dawson L, Krishna S, Bundas J, Cook R, Burrows D 2008 Appl. Phys. Lett. 92 183502Google Scholar

    [135]

    Plis E, Myers S, Khoshakhlagh A, Kim H S, Sharma Y, Gautam N, Dawson R, Krishna S 2009 Infrared Phys. Technol. 52 335Google Scholar

    [136]

    Plis E, Rodriguez J B, Balakrishnan G, Sharma Y, Kim H, Rotter T, Krishna S 2010 Semicond. Sci. Technol. 25 085010Google Scholar

    [137]

    Plis E, Myers S, Kutty M, Mailfert J, Smith E, Johnson S, Krishna S 2010 Appl. Phys. Lett. 97 123503Google Scholar

    [138]

    Khoshakhlagh A, Myers S, Plis E, Kutty M, Klein B, Gautam N, Kim H, Smith E, Rhiger D, Johnson S 2010 Proc. SPIE 7660 76602ZGoogle Scholar

    [139]

    Plis E, Gautam N, Myers S, Krishna S, Smith E, Johnson S, Krishna S 2011 Proc. SPIE 8012 80120XGoogle Scholar

    [140]

    Klipstein P, Klin O, Grossman S, Snapi N, Lukomsky I, Aronov D, Yassen M, Glozman A, Fishman T, Berkowicz E 2011 Opt. Eng. 50 061002Google Scholar

    [141]

    Klipstein P, Avnon E, Benny Y, Fraenkel A, Glozman A, Hojman E, Ilan E, Kahanov E, Klin O, Langof L 2015 Proc. SPIE 9451 94510KGoogle Scholar

    [142]

    Klipstein P, Avnon E, Benny Y, Berkowicz E, Cohen Y, Dobromislin R, Fraenkel R, Gershon G, Glozman A, Hojman E 2017 J. Electron. Mater. 46 5386Google Scholar

    [143]

    Klipstein P, Avnon E, Benny Y, Cohen Y, Fraenkel R, Gliksman S, Glozman A, Hojman E, Klin O, Krasovitsky L 2018 J. Electron. Mater. 47 5725Google Scholar

    [144]

    Itsuno A, Phillips J, Velicu S 2011 J. Electron. Mater. 40 1624Google Scholar

    [145]

    Itsuno A M, Phillips J D, Velicu S 2012 J. Electron. Mater. 41 2886Google Scholar

    [146]

    Rogalski A 2002 Infrared Phys. Technol. 43 187Google Scholar

    [147]

    李庆, 白杰, 吕衍秋, 胡伟达, 陈效双, 陆卫 2017 红外与毫米波学报 36 385Google Scholar

    Li Q, Bai J, Lü Y Q, Hu W D, Chen X S, Lu W 2017 J. Infrared Millim.Waves 36 385Google Scholar

    [148]

    Blazejewski E, Arias J, Williams G, McLevige W, Zandian M, Pasko J 1992 J. Vacuum Sci. Technol. B 10 1626Google Scholar

    [149]

    Arias J, Zandian M, Williams G, Blazejewski E, DeWames R, Pasko J 1991 J. Appl. Phys. 70 4620Google Scholar

    [150]

    Rogalski A 2010 J. Mod. Opt. 57 1716Google Scholar

    [151]

    Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [152]

    Liu H, Song C, Shen A, Gao M, Wasilewski Z, Buchanan M 2000 Appl. Phys. Lett. 77 2437Google Scholar

    [153]

    Eker S, Kaldirim M, Arslan Y, Besikci C 2008 IEEE Electron Dev. Lett. 29 1121Google Scholar

    [154]

    Haddadi A, Chevallier R, Chen G, Hoang A, Razeghi M 2015 Appl. Phys. Lett. 106 011104Google Scholar

    [155]

    Khoshakhlagh A, Rodriguez J, Plis E, Bishop G, Sharma Y, Kim H, Dawson L, Krishna S 2007 Appl. Phys. Lett. 91 263504Google Scholar

    [156]

    Hoang A, Chen G, Haddadi A, Razeghi M 2013 Appl. Phys. Lett. 102 011108Google Scholar

    [157]

    Tang X, Ackerman M M, Chen M, Guyot-Sionnest P 2019 Nat. Photon. 13 277Google Scholar

  • 图 1  红外探测器发展历史

    Fig. 1.  History of infrared photodetectors.

    图 2  美国Raytheon公司制备的不同陷光结构的中波HgCdTe红外探测[22]

    Fig. 2.  Raytheon company investigates the use of photon trapping structures with varying fill factor in HgCdTe detectors for use in mid-wavelength infrared (MWIR) detectors[22].

    图 3  HgCdTe陷光结构[23] (a)像元间距为8 μm的HgCdTe红外探测器阵列的单个像元示意图; (b) 3 × 3阵列像元阵列三维示意图

    Fig. 3.  Photo-trapping (PT) structure[23]: (a) Schematic representing a single pixel of an array with 8 μm pixels; (b) three dimensional view of 3 × 3 pixel array.

    图 4  单个像元间距为6 μm的陷光结构与非陷光结构阵列数值模拟的(a)反射谱和(b)量子效率[23]

    Fig. 4.  Calculated (a) reflectance spectra and (b) quantum efficiency for a single 6 μm pixel of the PT and non-PT arrays[23].

    图 5  (a) Si光电二极管的示意图; (b) Si晶元衬底上的n-i-p光电二极管, 锥形小孔贯穿n, i, p层[24]

    Fig. 5.  (a) Schematic of the Si photodiode; (b) the n-i-p photodiode structure on an silicon-on-insulator (SOI) wafer, the integrated tapered holes that span the n, i and p layers[24].

    图 6  FDTD数值模拟在垂直光照射时小孔周围横向电场的模式(顶部是XY截面, 底部为YZ截面; 时间从左到右增加, T = 1.4, 6.2, 11, 16, 21 fs)[24] (a)圆柱形小孔; (b)漏斗形小孔

    Fig. 6.  FDTD numerical simulations show the formation of lateral electric field modes around holes when illuminated by a normal incident beam of light[24]: (a) Cylindrical holes; (b) funnel-shaped holes. Top, X-Y plane; bottom, Y-Z plane. Time increased from left to right: T = 1.4, 6.2, 11, 16, 21 fs.

    图 7  表面等离激元波示意图(金属表面的电子对入射光的响应产生了表面几十纳米内的电子密度的轻微扰动, 构成了金属中表面电子的集体激发模式)

    Fig. 7.  Representation of surface plasmon polaritons: Under the excition of injection light, the density of electrons in the surface of metal experience a little change, which correspond to the collective excition modes of surface electrons.

    图 8  (a)金属光栅制备过程; (b) GaAs的扫描电子显微镜(scanning electron microscope, SEM)照片; (c)坡印亭矢量的流线图, 可见在共振波长10.05 μm处, 光场被几乎全被限制到了狭缝中[31]

    Fig. 8.  (a) Fabrication steps of the metal grating; (b) SEM photograph of GaAs; (c) streamline diagram of Poynting vector. At the resonance wavelength of 10.05 μm, the light field is almost completely confined into the slit[31].

    图 9  (a)量子点红外探测器上覆盖金属孔洞阵列SPP结构的器件示意图[32]; (b)金属孔洞阵列SPP结构的SEM照片[32]; (c)牛眼探测器的SEM照片[33]; (d)劈裂牛眼结构[34]; (e)石墨烯表面等离激元器件结构示意图[35]; (f)偏振多波长SPP结构[36]

    Fig. 9.  (a) Schematic diagram of the SPP structure with the metal hole array on the quantum dot infrared detector[32]; (b) SEM photograph of the metal hole array SPP structure[32]; (c) SEM photograph of the bull's eye detector[33]; (d) the bull's eye structure with slit[34]; copyright 2011 American Chemical Society (e) schematic diagram of graphene-surface plasmon photodetector[35]; (f) polarization dependent multi-wavelength SPP structure[36].

    图 10  (a) TiS2纳米片的吸收谱; (b) LSP与SPP共同增强量子阱红外探测器; (c), (d)纳米片的LSP共振与非共振模式下的电场分布图[41]; (e)硅量子点辅助的超宽谱石墨烯探测器[42]; (f)—(h)金阵列增强型MoS2光电二极管[40]

    Fig. 10.  (a) Absorption spectra of TiS2 nanosheets; (b) quantum well infrared detectors enhanced by LSP and SPP together; (c),(d) electric field distribution of nanosheets of LSP resonance and non-resonant mode[41]; (e) ultra-wide spectrum graphene detector auxiliary by silicon quantum dots[42]; (f)−(h) Au arrays enhanced MoS2 phototransistors[40].

    图 11  等离激元热电子能带图(肖特基势垒为ϕB; 电子-空穴对受激光激发; 满足动量守恒要求对应的过程为声子辅助或杂质辅助的)[43]

    Fig. 11.  The band diagram of plasmon hot electrons. Schottky barrier is ϕB. The illuminating light photoexcited electrons in metal, generating electron-hole pairs. Taking conservation of momentum in to consideration, this process may be aided by phonons or impurities[43].

    图 12  (a)基于LSP的光电探测器结构示意图; (b)基于LSP的光电探测器SEM照片[43]; (c)基于SPP的光电探测器结构示意图; (d)基于SPP热电子的光电探测器SEM照片; (e) SPP等离激元热电子器件的光电流Mapping图[44]

    Fig. 12.  (a) Schematic diagram of LSP-based photodetector; (b) SEM photo of photodetector based on LSP[43]; (c) schematic diagram of photodetector based on SPP; (d) SEM photograph of photodetector based on SPP thermoelectron; (e) photocurrent mapping of SPP plasmon thermal electronic devices[44].

    图 13  量子级联探测器能带结构示意图

    Fig. 13.  Band diagram of quantum cascade detectors.

    图 14  表面等离激元微腔结构耦合量子级联探测器结构示意图[56,58]

    Fig. 14.  Diagram of plasmonic micro-cavity coupled QCDs[56,58].

    图 15  宽光谱量子级联探测器设计 (a)双阱吸收; (b)微带吸收; (c)低势垒

    Fig. 15.  Designs of broadband spectrum QCDs: (a) Double quantum wells absorption; (b) mini-band absorption; (c) low barrier design.

    图 16  量子阱耦合型In0.53Ga0.47As/In0.52Al0.48As量子级联探测器[60] (a)能带结构; (b)响应率; (c)探测率

    Fig. 16.  Quantum well coupled In0.53Ga0.47As/In0.52Al0.48As QCDs[60]: (a) Band diagram; (b) responsivity; (c) detectivity.

    图 17  带间级联探测器能带结构示意图

    Fig. 17.  Band diagram of interband cascade detectors.

    图 18  (a)带间级联探测器弛豫区的优化设计; (b)探测率随温度的变化[63]

    Fig. 18.  (a) Optimization design of relaxation region in ICDs; (b) temperature dependent of the detectivity [63].

    图 19  响应率随温度的变化 (a)单周期结构; (b)双周器结构[64]

    Fig. 19.  Responsivity varies with temperature for one stage structure (a) and two stage structure (b) interband cascade detectors [64]

    图 20  常温工作时典型探测器峰值探测率对比

    Fig. 20.  Comparison of peak detectivity among typical photodetector at room temperature.

    图 21  (a)石墨烯/量子点复合结构增益原理图[74]; (b) CMOS集成的石墨烯/量子点焦平面结构示意图[75]; (c)室温中红外高增益黑磷探测器结构示意图[73]; (d)室温高增益高响应InAs纳米线[76]; (e)室温高性能中红外InAs纳米线[77]

    Fig. 21.  (a) Energy band diagram for interpretation of optical gain in graphene/quantum dots heterostructure[74]; (b) schematic diagram of CMOS integrated graphene/quantum dots focal array plane[75]; (c) schematic diagram of mid-infrared pure black phosphorous photodetector[73]; (d) high gain and high responsivity InAs nanowire[76]; (e) high performance mid-wavelength InAs nanowire[77].

    图 22  (a)光伏场效应晶体管示意图[78]; (b)不同器件的增益带宽积[65]; (c) InSb作光敏介质调控石墨烯器件结构示意图; (d)器件不同工作温度下的响应[78,80]

    Fig. 22.  (a) Schematic diagram of photovoltage field-effect transistors[78]; (b) gain-bandwidth product for different types of photodetectors[65]; (c) schematic diagram of mid-infrared graphene detector through interfacial gating of InSb; (d) the photoresponse of device in (c) at various temperatures[78,80].

    图 23  (a) 300 nm P(VDF-TrFE)薄膜的电滞回线; (b) P(VDF-TrFE)处于三种极化状态下, P(VDF-TrFE)-MoS2晶体管的Ids-Vds曲线, fresh指未极化状态, P up, P down分别代表极化向上和极化向下状态; (c), (d) P(VDF-TrFE)极化向上和极化向下时器件示意图以及能带图[82]

    Fig. 23.  (a) The ferroelectric hysteresis loop 300 nm P(VDF-TrFE) film capacitor; (b) the Ids-Vds characteristics (at ZERO gate voltage) with three states of ferroelectric layer, and the three states are fresh state (ferroelectric layer without polarization), polarization up (polarized by a pulse Vg of –40 V), and polarization down (polarized by a pulse Vg of –40 V) states, respectively; (c), (d) the cross-section structures of the device and equilibrium energy band diagrams of three different ferroelectric polarization states[82].

    图 24  (a)石墨烯-PZT场效应晶体管结构示意图; (b)石墨烯- LiNbO3热释电探测器器件结构图; (c)器件的工作原理图[87]

    Fig. 24.  (a) The schematic diagram of the graphene-PZT field effect transistor; (b) schematic of a graphene pyroelectric bolometer; (c) working mechanism diagram for the device in panel (b) [87].

    图 25  (a) Graphene/Ta2O5/graphene隧道结红外探测器结构示意图; (b)多种功率下红外响应曲线, 入射光波长3.2 μm; (c) h-BN/b-P/h-BN垂直异质结的红外探测器; (d) h-BN/b-P/h-BN垂直异质结器件7.7 μm红外光电响应[93,94]

    Fig. 25.  (a) Structure diagram of graphene/Ta2O5/graphene tunneling diode; (b) infrared responsivity curve of variable incident power with 3.2 μm wavelength; (c) h-BN/b-P/h-BN vertical heterojunction photodetectors; (d) 7.7 μm infrared responsivity of h-BN/b-P/h-BN vertical heterojunction photodetectors[93,94].

    图 26  (a) p-g-n异质结光电探测器的结构示意图; (b) p-g-n异质结光电探测器的光电响应; (c)黑砷磷b-As0.83P0.17样品的光学吸收谱, 插图为黑砷磷合金b-AsP/MoS2异质结器件结构示意图; (d) b-AsP/MoS2异质结光电探测器在中波红外的光电响应[98]

    Fig. 26.  (a) Structure diagram of p-g-n heterojunction photodetectors; (b) responsivity of p-g-n heterojunction photodetectors; (c) absorption spectrum of b-As0.83P0.17; (d) mid-infrared response of b-AsP/MoS2 heterojunction photodetectors[98].

    图 27  BP与MoS2异质结红外探测器[99] (a) 1000 K黑体源辐射下光电流与暗电流; (b)探测率的对比; (c)响应时间

    Fig. 27.  BP/MoS2 infrared photodetector[99]: (a) Photocurrent with 1000 K blackbody source and the dark current; (b) detectivity comparison of typical infrared photodetectors; (c) response time

    图 28  传统光伏型红外探测器 (a)和雪崩光电探测器(b)工作时的能带结构图

    Fig. 28.  The tunneling effect (a) and avalanche effect (b) in p-n junction under large reverse bias.

    图 29  InGaAs/InP APD的MIM结构示意图[108110] (a)偏振选择型结构示意图; (b)无偏振选择型结构示意图; (c), (d)分别为SEM图

    Fig. 29.  MIM structure diagram used for InGaAs/InP avalanche photodiode[108-110]: (a) Polarization selective structure; (b) non-polarization selective structure; (c) and (d) are the SEM image.

    图 30  (a) BP/InSe雪崩光电二极管的电流特性; (b)器件的噪声及增益水平; (c)传统的雪崩光电探测器载流子碰撞过程; (d)弹道雪崩效应示意图

    Fig. 30.  (a) I-V characteristics of BP/InSe APD; (b) noise and gain of BP/InSe APD; (c) traditional ionizing collision process; (d) ballistic avalanche mechanism of BP/InSe APD[111].

    图 31  离化过程能带结构示意图 (a)空穴注入型; (b)电子注入型

    Fig. 31.  The diagram of ionization process: (a) Hole injection; (b) electron injection.

    图 32  DRS制备的128 × 128 HgCdTe APD焦平面器件照片和器件平均增益[115]

    Fig. 32.  The photograph of 128 × 128 HgCdTe APD FPA fabricated in DRS and the average gain[115].

    图 33  Sofradir公司利用HgCdTe APD 3D实时成像截图[118]

    Fig. 33.  The 3D real time imaging print screen of HgCdTe APD fabricated in Sofradir[118].

    图 34  平面结(a)和台面结(b)碲镉汞雪崩光电探测器在不同工艺下的暗电流特性曲线[121]

    Fig. 34.  The I-V characteristic of planar (a) and mesa (b) HgCdTe APD with variable fabrication process[121].

    图 35  热载流子红外探测器器件结构和能带示意图[122]

    Fig. 35.  Structure and band diagram of hot carriers infrared photodetectors[122].

    图 36  热载流子红外探测器的光谱响应[122]

    Fig. 36.  Photo response of hot carriers infrared photodetectors[122].

    图 37  热载流子红外探测器光谱权重图[122]

    Fig. 37.  Spectral weight diagram of hot carriers infrared photodetectors[122].

    图 38  不同波长泵浦光下器件光谱权重图[122]

    Fig. 38.  Spectral weight diagram with variable pump light[122].

    图 39  nBn型器件和能带结构示意图

    Fig. 39.  Structure and band diagram of nBn devices.

    图 40  普通PN结二极管器件与XBn器件的暗电流与温度相关性[127]

    Fig. 40.  Schematic Arrhenius plot of the dark current in a standard diode and XBn device[127].

    图 41  InSb nBn探测器(a)器件结构示意图和(b)能带结构示意图[128,129]

    Fig. 41.  Schematic diagram of (a) design of InSb nBn structure and (b) energy band of InSb nBn structure[128,129].

    图 42  nBn结构InSb探测器 (a) 77 K下暗电流特性; (b) 104—170 K暗电流特性; (c) 77 K下光谱响应; (d)不同温度和结构下的暗电流特性[128,129]

    Fig. 42.  For InSb nBn infrared photodetectors, the dark current characteristics at (a) 77 K and (b) 104−170 K, (c) the spectral response at 77 K, and (d) the dark current characteristics at different temperatures and structures[128,129].

    图 43  短波红外InAs/GaSb/AlSb/GaSb Ⅱ类超晶格nBn探测器 (a)结构示意图; (b)量子效率; (c)暗电流特性; (d)探测率[131]

    Fig. 43.  SWIR InAs/GaSb/AlSb/GaSb nBn detector based on Type-II superlattice: (a) Structure diafram; (b) quantum efficiency; (c) dark current characteristics; (d) detectivity at different temperature[131].

    图 44  以色列SCD公司制备Pelican-D系列长波探测器 (a)探测器组件; (b) 77 K下成像结果[141143]

    Fig. 44.  (a) Photograph of long-wavelength infrared (LWIR) InAs/GaSb pBp device based on Type-II superlattice fabricated by Israel SCD company; (b) image at 77 K[141143].

    图 45  碲镉汞nBvn, nBn及DLPH器件的(a)中波暗电流、(b)长波暗电流、(c)中波探测率和(d)长波探测率[144]

    Fig. 45.  The dark current of (a) MWIR and (b) LWIR HgCdTe nBvn, nBn and DLPH devices; (c) and (d) show the detectivity of MWIR and LWIR devices, respectively[144].

    图 46  128 × 128长波/中波双色碲镉汞红外焦平面探测器 (a)暗电流特性; (b)中波/长波光谱响应曲线; (c)中波长波成像效果

    Fig. 46.  128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane: (a) Dark current characteristic; (b) spectral response; (c) two-color imaging.

    图 47  (a) HgTe量子点双色红外探测器结构; (b)双色探测率随温度的变化; (c)冷水与热水的双色成像[157]

    Fig. 47.  (a) Structure of HgTe quantum dot dual-band infrared photodetector; (b) temperature dependent short-wavelength and mid-wavelength detectivity; (c) two-color imaging of cold and hot water[157].

  • [1]

    Herschel W 1800 Philos. Trans. Roy. Soc. London 90 284Google Scholar

    [2]

    Rogalski A 2012 Opt. Electron. Rev. 20 279

    [3]

    Becquerel M 1839 Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 9 561

    [4]

    Smith W 1873 Nature 7 303Google Scholar

    [5]

    Case T W 1917 Phys. Rev. 9 305Google Scholar

    [6]

    Lange B 1930 Phys. Zeitschr 31 139

    [7]

    Lange B 1931 Naturwissenschaften 19 525Google Scholar

    [8]

    Lovell D 1969 Am. J. Phys. 37 467Google Scholar

    [9]

    Avery D, Goodwin D, Lawson W, Moss T 1954 Proc. Phys. Soc.Section B 67 761Google Scholar

    [10]

    Lawson W, Nielsen S, Putley E, Young A 1959 J.Phys. Chem. Solids 9 325Google Scholar

    [11]

    汤定元 1991 激光与红外 21 5

    Tang D Y 1991 Laser & Infrared 21 5

    [12]

    茅文英, 褚君浩, 李言谨, 王子孟, 方家熊 1994 红外与毫米波学报 13 352

    Mao W Y, Chu J H, Li Y J, Wang Z M, Fang J X 1994 J. Infrared Millim.Waves 13 352

    [13]

    杨建荣, 何进 1994 红外与毫米波学报 13 191

    Yang J R, He J 1994 J. Infrared Millim.Waves 13 191

    [14]

    Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101Google Scholar

    [15]

    杨建荣 2012 碲镉汞材料物理与技术 第一版 (北京: 国防工业出版社) 第3—7页

    Yang J R 2012 Physics and Technology of HgCdTe Materials (1st Ed.) (Beijing: National Defense Industry Press) pp3−7 (in Chinese)

    [16]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [17]

    Lin H, Cheung H Y, Xiu F, Wang F, Yip S, Han N, Hung T, Zhou J, Ho J C, Wong C Y 2013 J. Mater. Chem. A 1 9942Google Scholar

    [18]

    Cansizoglu H, Bartolo-Perez C, Gao Y, Devine E P, Ghandiparsi S, Polat K G, Mamtaz H H, Yamada T, Elrefaie A F, Wang S Y 2018 Photon. Res. 6 734Google Scholar

    [19]

    胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25Google Scholar

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25Google Scholar

    [20]

    Krishna S, Posani K T, Tripathi V, Annamalai S 2005 The 18th Annual Meeting of the IEEE Sydney, Australia October 22−28, 2005 p909

    [21]

    Hiralal P, Chien C, Lal N N, Abeygunasekara W, Kumar A, Butt H, Zhou H, Unalan H E, Baumberg J J, Amaratunga G A 2014 Nanoscale 6 14555Google Scholar

    [22]

    Wehner J, Smith E, Venzor G, Smith K, Ramirez A, Kolasa B, Olsson K, Vilela M 2011 J. Electron. Mater. 40 1840Google Scholar

    [23]

    Pinkie B, Schuster J, Bellotti E 2013 Opt. Lett. 38 2546Google Scholar

    [24]

    Gao Y, Cansizoglu H, Polat K G, Ghandiparsi S, Kaya A, Mamtaz H H, Mayet A S, Wang Y, Zhang X, Yamada T 2017 Nat. Photon. 11 301Google Scholar

    [25]

    Novotny L, Hecht B 2012 Principles of Nano-Optics (Cambridge: Cambridge University Press)

    [26]

    Ritchie R 1957 Phys. Rev. 106 874Google Scholar

    [27]

    Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332

    [28]

    Sommerfeld A 1899 Annalen der Physik 303 233

    [29]

    Wood R W 1902 Philos. Mag. 4 396Google Scholar

    [30]

    Kretschmann E, Raether H 1968 Zeitschrift für Naturforschung A 23 2135

    [31]

    Bouchon P, Pardo F, Portier B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J L 2011 Appl. Phys. Lett. 98 191109Google Scholar

    [32]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D, Lin S Y 2010 Nano Lett. 10 1704Google Scholar

    [33]

    Thio T, Pellerin K M, Linke R A, Lezec H J, Ebbesen T W 2001 Opt. Lett. 26 1972Google Scholar

    [34]

    Ren F F, Ang K W, Ye J, Yu M, Lo G Q, Kwong D L 2011 Nano Lett. 11 1289Google Scholar

    [35]

    Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8

    [36]

    Laux E, Genet C, Skauli T, Ebbesen T W 2008 Nat. Photon. 2 161Google Scholar

    [37]

    Mie G 1908 Annalen der Physik 330 377

    [38]

    Jackson J D 2012 Classical Electrodynamics (New York: John Wiley & Sons)

    [39]

    Novotny L, van Hulst N 2011 Nature Photon. 5 83Google Scholar

    [40]

    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W 2015 Small 11 2392Google Scholar

    [41]

    Zhu Z, Zou Y, Hu W, Li Y, Gu Y, Cao B, Guo N, Wang L, Song J, Zhang S 2016 Adv. Funct. Mater. 26 1793Google Scholar

    [42]

    Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J 2017 ACS Nano 11 9854Google Scholar

    [43]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [44]

    Chalabi H, Schoen D, Brongersma M L 2014 Nano Lett. 14 1374Google Scholar

    [45]

    Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P, Halas N J 2012 Nano Lett. 12 3808Google Scholar

    [46]

    Brongersma M L, Halas N J, Nordlander P 2015 Nature Nanotechnol. 10 25Google Scholar

    [47]

    Christopher P, Moskovits M 2017 Ann. Rev. Phys. Chem. 68 379Google Scholar

    [48]

    West L, Eglash S 1985 Appl. Phys. Lett. 46 1156Google Scholar

    [49]

    Levine B, Malik R, Walker J, Choi K, Bethea C, Kleinman D, Vandenberg J 1987 Appl. Phys. Lett. 50 273Google Scholar

    [50]

    Smith D, Mailhiot C 1987 J. Appl. Phys. 62 2545Google Scholar

    [51]

    Gendron L, Carras M, Huynh A, Ortiz V, Koeniguer C, Berger V 2004 Appl. Phys. Lett. 85 2824Google Scholar

    [52]

    Giorgetta F R, Baumann E, Hofstetter D, Manz C, Yang Q, Köhler K, Graf M 2007 Appl. Phys. Lett. 91 111115Google Scholar

    [53]

    Giorgetta F R, Baumann E, Théron R, Pellaton M, Hofstetter D, Fischer M, Faist J 2008 Appl. Phys. Lett. 92 121101Google Scholar

    [54]

    Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Beere H E, Ritchie D A, Linfield E, Davies A G 2009 IEEE J. Quantum Electron. 45 1039Google Scholar

    [55]

    Vardi A, Bahir G, Guillot F, Bougerol C, Monroy E, Schacham S, Tchernycheva M, Julien F 2008 Appl. Phys. Lett. 92 011112Google Scholar

    [56]

    Li L, Xiong D, Wen J, Li N, Zhu Z 2016 Infrared Phys. Technol. 79 45Google Scholar

    [57]

    Hofstetter D, Giorgetta F R, Baumann E, Yang Q, Manz C, Köhler K 2008 Appl. Phys. Lett. 93 221106Google Scholar

    [58]

    Li L, Xiong D, Tang Z, Wen J, Li N, Chen P, Zhu Z 2017 J. Appl. Phys. 121 083102Google Scholar

    [59]

    李梁 2017 博士学位论文(上海: 华东师范大学)

    Li L 2017 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [60]

    Dougakiuchi T, Fujita K, Hirohata T, Ito A, Hitaka M, Edamura T 2016 Appl. Phys. Lett. 109 261107Google Scholar

    [61]

    Li J V, Yang R Q, Hill C J, Chuang S L 2005 Appl. Phys. Lett. 86 101102Google Scholar

    [62]

    Yang R Q, Tian Z, Cai Z, Klem J, Johnson M B, Liu H 2010 J. Appl. Phys. 107 054514Google Scholar

    [63]

    Yang R Q, Tian Z, Klem J, Mishima T D, Santos M B, Johnson M B 2010 Appl. Phys. Lett. 96 063504Google Scholar

    [64]

    Zhou Y, Chen J, Xu Z, He L 2016 Semicond. Sci. Technol. 31 085005Google Scholar

    [65]

    Fang H H, Hu W D 2017 Adv. Sci. 4 1700323Google Scholar

    [66]

    Kufer D, Konstantatos G 2016 ACS Photon. 3 2197Google Scholar

    [67]

    Kufer D, Lasanta T, Bernechea M, Koppens F H L, Konstantatos G 2016 ACS Photon. 3 1324Google Scholar

    [68]

    Sun Z, Liu Z, Li J, Tai G A, Lau S P, Yan F 2012 Adv. Mater. 24 5878Google Scholar

    [69]

    Hu C, Dong D, Yang X, Qiao K, Yang D, Deng H, Yuan S, Khan J, Lan Y, Song H, Tang J 2017 Adv. Funct. Mater. 27 1603605Google Scholar

    [70]

    Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H L, Konstantatos G 2015 Adv. Mater. 27 176Google Scholar

    [71]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [72]

    Island J O, Blanter S I, Buscema M, van der Zant H S, Castellanos-Gomez A 2015 Nano Lett. 15 7853Google Scholar

    [73]

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano Lett. 16 4648Google Scholar

    [74]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia de Arquer F P, Gatti F, Koppens F H 2012 Nature Nanotechnol. 7 363Google Scholar

    [75]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photon. 11 366Google Scholar

    [76]

    Guo N, Hu W, Liao L, Yip S, Ho J C, Miao J, Zhang Z, Zou J, Jiang T, Wu S, Chen X, Lu W 2014 Adv. Mater. 26 8203Google Scholar

    [77]

    Fang H, Hu W, Wang P, Guo N, Luo W, Zheng D, Gong F, Luo M, Tian H, Zhang X, Luo C, Wu X, Chen P, Liao L, Pan A, Chen X, Lu W 2016 Nano Lett. 16 6416Google Scholar

    [78]

    Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar

    [79]

    Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066Google Scholar

    [80]

    Fukushima S, Shimatani M, Okuda S, Ogawa S, Kanai Y, Ono T, Matsumoto K 2018 Appl. Phys. Lett. 113 061102Google Scholar

    [81]

    Legrand J F 1989 Ferroelectrics 91 303

    [82]

    Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T 2015 Adv. Mater. 27 6575Google Scholar

    [83]

    Wu G, Wang X, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J, Zhang S 2016 Nanotechnology 27 364002Google Scholar

    [84]

    Huang H, Wang X, Wang P, Wu G, Chen Y, Meng C, Liao L, Wang J, Hu W, Shen H 2016 RSC Adv. 6 87416Google Scholar

    [85]

    Zheng D, Wang J, Hu W, Liao L, Fang H, Guo N, Wang P, Gong F, Wang X, Fan Z 2016 Nano Lett. 16 2548Google Scholar

    [86]

    Zheng D, Fang H, Wang P, Luo W, Gong F, Ho J C, Chen X, Lu W, Liao L, Wang J 2016 Adv. Funct. Mater. 26 7690Google Scholar

    [87]

    Sassi U, Parret R, Nanot S, Bruna M, Borini S, de Fazio D, Zhao Z, Lidorikis E, Koppens F, Ferrari A C 2017 Nat. Commun. 8 14311Google Scholar

    [88]

    Hsieh C Y, Chen Y T, Tan W J, Chen Y F, Shih W Y, Shih W H 2012 Appl. Phys. Lett. 100 113507Google Scholar

    [89]

    Wang L 2013 Science 342 614Google Scholar

    [90]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [91]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826Google Scholar

    [92]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H 2014 Sci. Rep. 4 3826

    [93]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [94]

    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T 2017 Nat. Commun. 8 1672Google Scholar

    [95]

    Han J, Wang J, Yang M, Kong X, Chen X, Huang Z, Guo H, Gou J, Tao S, Liu Z 2018 Adv. Mater. 30 1804020Google Scholar

    [96]

    Yang M, Wang J, Han J, Ling J, Ji C, Kong X, Liu X, Huang Z, Gou J, Liu Z 2018 ACS Photon. 5 3438Google Scholar

    [97]

    Yang M, Wang J, Zhao Y, He L, Ji C, Liu X, Zhou H, Wu Z, Wang X, Jiang Y 2019 ACS Nano 13 755

    [98]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lv Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254Google Scholar

    [99]

    Bullock J, Amani M, Cho J, Chen Y Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y L 2018 Nat. Photon. 12 601Google Scholar

    [100]

    Gibson S J, van Kasteren B, Tekcan B, Cui Y, van Dam D, Haverkort J E, Bakkers E P, Reimer M E 2019 Nature Nanotechnol. 14 473Google Scholar

    [101]

    Jiang X, Itzler M A, Ben-Michael R, Slomkowski K 2007 IEEE J. Selected Topics in Quantum Electronics 13 895Google Scholar

    [102]

    Lacaita A, Francese P, Zappa F, Cova S 1994 Appl. Opt. 33 6902Google Scholar

    [103]

    Kang Y, Mages P, Clawson A, Yu P, Bitter M, Pan Z, Pauchard A, Hummel S, Lo Y 2002 IEEE Photon.Technol. Lett. 14 1593Google Scholar

    [104]

    胡伟达, 李庆, 温洁, 王文娟, 陈效双, 陆卫 2018 红外技术 40 201

    Hu W D, Li Q, Wen J, Wang W J, Chen X S, Lu W 2018 Infrared Technol. 40 201

    [105]

    Singh A, Srivastav V, Pal R 2011 Opt. Laser Technol. 43 1358Google Scholar

    [106]

    Webb P P, McIntyre R J, Conradi J 1974 RCA Rev. 35 234

    [107]

    McIntyre R 1966 IEEE Trans. Electron Dev. 13 164

    [108]

    Wen J, Wang W, Li N, Li Z, Lu W 2017 Appl. Phys. Lett. 110 231105Google Scholar

    [109]

    Wen J, Wang W, Li N, Li Z, Lu W 2016 Opt. Quantum Electron. 48 150Google Scholar

    [110]

    Wen J, Wang W, Chen X, Li N, Chen X, Lu W 2018 J. Appl. Phys. 123 161530Google Scholar

    [111]

    Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, Wang N, Chen W, Cao T, Hu W, Sun D, Chen X, Miao F, Shi Y, Wang X 2019 Nature Nanotechnol. 14 217Google Scholar

    [112]

    Leveque G, Nasser M, Bertho D, Orsal B, Alabedra R 1993 Semicond. Sci. Technol. 8 1317Google Scholar

    [113]

    Beck J D, Wan C F, Kinch M A, Robinson J E 2001 Proc. SPIE 4454 188Google Scholar

    [114]

    Kinch M, Beck J, Wan C F, Ma F, Campbell J 2004 J. Electron. Mater. 33 630Google Scholar

    [115]

    Beck J, Woodall M, Scritchfield R, Ohlson M, Wood L, Mitra P, Robinson J 2007 Proc. SPIE 6542 654217Google Scholar

    [116]

    Beck J, Wan C, Kinch M, Robinson J, Mitra P, Scritchfield R, Ma F, Campbell J 2006 J. Electron. Mater. 35 1166Google Scholar

    [117]

    de Borniol E, Guellec F, Rothman J, Perez A, Zanatta J P, Tchagaspanian M, Castelein P, Destéfanis G, Peyrard J C, Pistone F 2010 Proc. SPIE 7660 76603DGoogle Scholar

    [118]

    de Borniol E D, Rothman J, Guellec F, Vojetta G, Destéfanis G, Pacaud O 2012 Opt. Eng. 51 061305Google Scholar

    [119]

    Kerlain A, Bonnouvrier G, Rubaldo L, Decaens G, Reibel Y, Abraham P, Rothman J, Mollard L, de Borniol E 2012 J. Electron. Mater. 41 2943Google Scholar

    [120]

    Qiu W C, Hu W D, Chen L, Lin C, Cheng X A, Chen X S, Lu W 2015 IEEE Trans. Electron Dev. 62 1926Google Scholar

    [121]

    Li Q, He J L, Hu W D, Chen L, Chen X S, Lu W 2018 IEEE Trans. Electron Dev. 65 572Google Scholar

    [122]

    Lao Y F, Perera A U, Li L, Khanna S, Linfield E, Liu H 2014 Nat. Photon. 8 412Google Scholar

    [123]

    Perera A U, Chauhan D, Lao Y F, Li L, Khanna S P, Linfield E H 2016 Proc. SPIE 9844 98440XGoogle Scholar

    [124]

    Esaev D, Rinzan M, Matsik S, Perera A 2004 J. Appl. Phys. 96 4588Google Scholar

    [125]

    Chauhan D, Perera A, Li L, Chen L, Linfield E 2018 Infrared Phys. Technol. 95 148Google Scholar

    [126]

    Maimon S, Wicks G 2006 Appl. Phys. Lett. 89 151109

    [127]

    Klipstein P 2008 Proc. SPIE 6940 69402UGoogle Scholar

    [128]

    Evirgen A, Abautret J, Perez J, Aït-Kaci H, Christol P, Fleury J, Sik H, Nedelcu A, Cluzel R, Cordat A 2014 Proc. SPIE 8993 899313Google Scholar

    [129]

    Perez J P, Evirgen A, Abautret J, Christol P, Cordat A, Nedelcu A 2015 Proc. SPIE 9370 93700NGoogle Scholar

    [130]

    Rodriguez J B, Plis E, Bishop G, Sharma Y, Kim H, Dawson L, Krishna S 2007 Appl. Phys. Lett. 91 043514Google Scholar

    [131]

    Haddadi A, Chevallier R, Dehzangi A, Razeghi M 2017 Appl. Phys. Lett. 110 101104Google Scholar

    [132]

    Hood A, Razeghi M, Aifer E H, Brown G J 2005 Appl. Phys. Lett. 87 151113Google Scholar

    [133]

    Haddadi A, Chen G, Chevallier R, Hoang A, Razeghi M 2014 Appl. Phys. Lett. 105 121104Google Scholar

    [134]

    Kim H, Plis E, Rodriguez J, Bishop G, Sharma Y, Dawson L, Krishna S, Bundas J, Cook R, Burrows D 2008 Appl. Phys. Lett. 92 183502Google Scholar

    [135]

    Plis E, Myers S, Khoshakhlagh A, Kim H S, Sharma Y, Gautam N, Dawson R, Krishna S 2009 Infrared Phys. Technol. 52 335Google Scholar

    [136]

    Plis E, Rodriguez J B, Balakrishnan G, Sharma Y, Kim H, Rotter T, Krishna S 2010 Semicond. Sci. Technol. 25 085010Google Scholar

    [137]

    Plis E, Myers S, Kutty M, Mailfert J, Smith E, Johnson S, Krishna S 2010 Appl. Phys. Lett. 97 123503Google Scholar

    [138]

    Khoshakhlagh A, Myers S, Plis E, Kutty M, Klein B, Gautam N, Kim H, Smith E, Rhiger D, Johnson S 2010 Proc. SPIE 7660 76602ZGoogle Scholar

    [139]

    Plis E, Gautam N, Myers S, Krishna S, Smith E, Johnson S, Krishna S 2011 Proc. SPIE 8012 80120XGoogle Scholar

    [140]

    Klipstein P, Klin O, Grossman S, Snapi N, Lukomsky I, Aronov D, Yassen M, Glozman A, Fishman T, Berkowicz E 2011 Opt. Eng. 50 061002Google Scholar

    [141]

    Klipstein P, Avnon E, Benny Y, Fraenkel A, Glozman A, Hojman E, Ilan E, Kahanov E, Klin O, Langof L 2015 Proc. SPIE 9451 94510KGoogle Scholar

    [142]

    Klipstein P, Avnon E, Benny Y, Berkowicz E, Cohen Y, Dobromislin R, Fraenkel R, Gershon G, Glozman A, Hojman E 2017 J. Electron. Mater. 46 5386Google Scholar

    [143]

    Klipstein P, Avnon E, Benny Y, Cohen Y, Fraenkel R, Gliksman S, Glozman A, Hojman E, Klin O, Krasovitsky L 2018 J. Electron. Mater. 47 5725Google Scholar

    [144]

    Itsuno A, Phillips J, Velicu S 2011 J. Electron. Mater. 40 1624Google Scholar

    [145]

    Itsuno A M, Phillips J D, Velicu S 2012 J. Electron. Mater. 41 2886Google Scholar

    [146]

    Rogalski A 2002 Infrared Phys. Technol. 43 187Google Scholar

    [147]

    李庆, 白杰, 吕衍秋, 胡伟达, 陈效双, 陆卫 2017 红外与毫米波学报 36 385Google Scholar

    Li Q, Bai J, Lü Y Q, Hu W D, Chen X S, Lu W 2017 J. Infrared Millim.Waves 36 385Google Scholar

    [148]

    Blazejewski E, Arias J, Williams G, McLevige W, Zandian M, Pasko J 1992 J. Vacuum Sci. Technol. B 10 1626Google Scholar

    [149]

    Arias J, Zandian M, Williams G, Blazejewski E, DeWames R, Pasko J 1991 J. Appl. Phys. 70 4620Google Scholar

    [150]

    Rogalski A 2010 J. Mod. Opt. 57 1716Google Scholar

    [151]

    Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [152]

    Liu H, Song C, Shen A, Gao M, Wasilewski Z, Buchanan M 2000 Appl. Phys. Lett. 77 2437Google Scholar

    [153]

    Eker S, Kaldirim M, Arslan Y, Besikci C 2008 IEEE Electron Dev. Lett. 29 1121Google Scholar

    [154]

    Haddadi A, Chevallier R, Chen G, Hoang A, Razeghi M 2015 Appl. Phys. Lett. 106 011104Google Scholar

    [155]

    Khoshakhlagh A, Rodriguez J, Plis E, Bishop G, Sharma Y, Kim H, Dawson L, Krishna S 2007 Appl. Phys. Lett. 91 263504Google Scholar

    [156]

    Hoang A, Chen G, Haddadi A, Razeghi M 2013 Appl. Phys. Lett. 102 011108Google Scholar

    [157]

    Tang X, Ackerman M M, Chen M, Guyot-Sionnest P 2019 Nat. Photon. 13 277Google Scholar

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎. InP衬底上的双载流子倍增雪崩光电二极管结构设计. 物理学报, 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
    [3] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, 2022, 71(11): 110703. doi: 10.7498/aps.71.20220380
    [4] 程凯, 魏鑫, 曾德凯, 季选韬, 朱坤, 王晓冬. 基于微结构气体探测器对单能和连续谱快中子的模拟解谱. 物理学报, 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [5] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法. 物理学报, 2021, 70(6): 060701. doi: 10.7498/aps.70.20201530
    [6] 韩冬, 孙飞阳, 鲁继远, 宋福明, 徐跃. 采用多晶硅场板降低单光子雪崩二极管探测器暗计数. 物理学报, 2020, 69(14): 148501. doi: 10.7498/aps.69.20200523
    [7] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [8] 王海云, 祁辉荣, 刘凌, 原之洋, 张余炼, 温志文, 张建, 陈元柏, 欧阳群. 微结构气体探测器中紫外激光束的信号和指向精度实验研究. 物理学报, 2019, 68(2): 022901. doi: 10.7498/aps.68.20181613
    [9] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [10] 肖标, 张敏莉, 王洪波, 刘继延. 基于窄带隙聚合物的高性能可见-近红外光伏探测器. 物理学报, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [11] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [12] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率. 物理学报, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [13] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [14] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展. 物理学报, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [15] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [16] 霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠. 两端叠层结构的中长波量子阱红外探测器. 物理学报, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
    [17] 肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云. 能带工程对射频功率SiGe异质结双极晶体管热性能的改善. 物理学报, 2011, 60(4): 044402. doi: 10.7498/aps.60.044402
    [18] 倪培根. 光子晶体制备技术和应用研究进展. 物理学报, 2010, 59(1): 340-350. doi: 10.7498/aps.59.340
    [19] 王金东, 吴祖恒, 张 兵, 魏正军, 廖常俊, 刘颂豪. 用于红外单光子探测的雪崩光电二极管传输线抑制电路模型的理论分析. 物理学报, 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [20] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究. 物理学报, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
计量
  • 文章访问数:  41024
  • PDF下载量:  1838
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-03-31
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回