搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工微纳结构增强长波及甚长波红外探测器

葛浩楠 谢润章 郭家祥 李庆 余羿叶 何家乐 王芳 王鹏 胡伟达

引用本文:
Citation:

人工微纳结构增强长波及甚长波红外探测器

葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达

Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors

Ge Hao-Nan, Xie Run-Zhang, Guo Jia-Xiang, Li Qing, Yu Yi-Ye, He Jia-Le, Wang Fang, Wang Peng, Hu Wei-Da
PDF
HTML
导出引用
  • 红外探测器具有把物体辐射的光子信息转换为电信号的能力, 拓宽了人们观察自然环境与人类活动的边界. 当前, 长波及甚长波红外探测器已在大气监测、夜间侦查、深空探测等领域有诸多应用. 随着各国对高端红外探测器要求的快速提升, 传统红外探测器难以兼顾高响应率、高响应速度以及多维探测等性能指标的瓶颈日益凸显. 基于微纳光学理论设计的人工微纳结构, 可实现其与红外光子的高效耦合, 综合调控红外光场的振幅、偏振、相位及波长等自由度. 为拓展红外探测器额外的调控自由度, 进而在实现高量子效率的同时, 兼顾较高的响应速率与优异的偏振或波长选择性, 集成红外探测器与人工微纳结构的研究思路近年来被广泛应用. 本文讨论了人工微纳结构在长波及甚长波红外探测领域的应用进展, 详述了表面等离激元、局域等离激元、谐振腔结构、陷光结构、超透镜、赝表面等离激元、间隙等离激元和声子极化激元等机制的应用现状及各机制固有的优劣势, 进而指出了人工微纳结构在长波及甚长波红外探测应用的发展前景与方向.
    The infrared detectors own the ability to convert information carried by photons radiated by objects into electrical signals, which broadens the horizons of human beings observing the natural environment and human activities. At present, long and very long-wavelength infrared detections have many applications in atmospheric monitoring, biological spectroscopy, night vision, etc. As the demand for high-performance infrared detectors grows rapidly, it is difficult for traditional infrared detectors to arrive at performance indicators such as high response rate, high response speed, and multi-dimensional detection. The artificial structure designed based on micro- and nano-optics can be coupled with infrared photons efficiently, and control the degrees of freedom of infrared light fields such as amplitude, polarization, phase, and wavelength comprehensively. The systems integrated by infrared detectors and artificial micro- and nano-photonic structures provide additional controllable degrees of freedom for infrared detectors. And they are expected to achieve high quantum efficiency and other merits such as high response rate, excellent polarization, and wavelength selectivity. In this review paper, the research progress of the application of artificial micro- and nano-structure in the long and very long-wavelength infrared bands is presented; the advantages, disadvantages, and the application status of different mechanisms are described in detail, which include surface plasmon polaritons, localized surface plasmon, resonant cavity structure, photon-trapping structure, metalens, spoof surface plasmon, gap plasmon, and phonon polariton. In addition, the development prospect and direction of artificial micro- and nano-structure in long-wave and very long-wave infrared devices are further pointed out.
      通信作者: 谢润章, xierunzhang@mail.sitp.ac.cn ; 王鹏, w_peng@mail.sitp.ac.cn ; 胡伟达, wdhu@mail.sitp.ac.cn
      作者简介:
      谢润章, 中国科学院上海技术物理研究所博士后, 中国科学院院长特别奖、中国科学院特别研究助理资助获得者. 主要从事微纳尺度红外光子-电子相互作用、窄禁带非平衡载流子输运、红外探测光电联合调控等理论研究. 以第一、通讯作者在Science Advances, Optics Letters, Optics Express等学术期刊发表SCI文章5篇
      王鹏, 中国科学院上海技术物理研究所青年研究员, 国家优秀青年基金获得者. 主要从事红外探测器件机理与应用研究. 以第一、通讯作者在Nature Communications, Science Advances, Light: Science & Applications, Advanced MaterialsIEEE系列期刊发表SCI论文30余篇, h因子37. 现任中国物理学会 Chinese Physics Letters, Chinese Physics B、《物理学报》和《物理》四刊联合青年编委, Sensors编委
      胡伟达, 中国科学院上海技术物理研究所研究员, 博士生导师, 国家杰出青年基金、中国青年科技奖、萨本栋应用物理奖获得者, 国家重点研发计划、基础加强项目首席科学家. 长期从事红外探测器及空间应用研究. 以第一、通信作者在Science, Nature Nanotechnology, Nature Electronics等国际学术期刊共发表论文100余篇, 他引11000余次, h因子66, 授权中国发明专利21项. 现任Infrared Physics & Technology副主编、Optical and Quantum Electronics执行主编, 《红外与毫米波学报》、《红外技术》、《红外与激光工程》编委
    • 基金项目: 国家重点研发计划(批准号: 2020YFB2009300)、国家自然科学基金(批准号: 62122081, 62134009)、上海市自然科学基金(批准号: 22ZR1472500)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Xie Run-Zhang, xierunzhang@mail.sitp.ac.cn ; Wang Peng, w_peng@mail.sitp.ac.cn ; Hu Wei-Da, wdhu@mail.sitp.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB2009300), the National Natural Science Foundation of China (Grant Nos. 62122081, 62134009), the Natural Science Foundation of Shanghai, China (Grant No. 22ZR1472500), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
    [1]

    Ycas G, Giorgetta F R, Baumann E, Coddington I, Herman D, Diddams S A, Newbury N R 2018 Nat. Photonics 12 202Google Scholar

    [2]

    Norton P 2006 Opto-Electron. Rev. 14 1Google Scholar

    [3]

    Wu P, Ye L, Tong L, Wang P, Wang Y, Wang H, Ge H, Wang Z, Gu Y, Zhang K, Yu Y, Peng M, Wang F, Huang M, Zhou P, Hu W 2022 Light-Sci. Appl. 11 6Google Scholar

    [4]

    Rao G A, Mahulikar S P 2005 Aerosp. Sci. Technol. 9 701Google Scholar

    [5]

    For the James Webb Space Telescope (https://www.jwst.nasa.gov)

    [6]

    Xin L 2022 The Innovation 3 100198Google Scholar

    [7]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Physica Sinica 68 120701Google Scholar

    [8]

    Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101Google Scholar

    [9]

    Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L, Lu W 2013 IEEE J. Sel. Top. Quantum Electron. 19 4100107Google Scholar

    [10]

    Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu C, Lei D, Li G, Xiao S, Mei S, Giessen H, zu Heringdorf F M, Qiu C W 2021 eLight 1 5Google Scholar

    [11]

    Xiong J, Wu S T 2021 eLight 1 3Google Scholar

    [12]

    Xie R, Wang P, Wang F, Chen X S, Lu W, Hu W D 2021 Opt. Lett. 46 1361Google Scholar

    [13]

    Li S Q, Xu X, Veetil R M, Valuckas V, Paniagua-Domínguez R, Kuznetsov A I 2019 Science 364 1087Google Scholar

    [14]

    Lin K T, Lin H, Jia B 2020 Nanophotonics 9 3135Google Scholar

    [15]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [16]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [17]

    Farag A, Ubl M, Konzelmann A, Hentschel M, Giessen H 2019 Opt. Express 27 25012Google Scholar

    [18]

    Ge H, Xie R, Chen Y, Wang P, Li Q, Gu Y, Guo J, He J, Wang F, Hu W 2021 Opt. Express 29 22823Google Scholar

    [19]

    Schuster J, Bellotti E 2013 Opt. Express 21 14712Google Scholar

    [20]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar

    [21]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A:Pure Appl. Opt. 7 S97Google Scholar

    [22]

    Bozhevolnyi S I, Jung J 2008 Opt. Express 16 2676Google Scholar

    [23]

    Huber A, Ocelic N, Kazantsev D, Hillenbrand R 2005 Appl. Phys. Lett. 87 081103Google Scholar

    [24]

    Nie X, Zhen H, Huang G, Yin Y, Li S, Chen P, Zhou X, Mei Y, Lu W 2020 Appl. Phys. Lett. 116 161107Google Scholar

    [25]

    郭家祥, 谢润章, 王鹏, 张涛, 张坤, 王海露, 贺婷, 李庆, 王芳, 陈效双, 陆卫, 胡伟达 2022 红外与毫米波学报 41 40Google Scholar

    Guo J X, Xie R Z, Wang P, He T, Li Q, Wang F, Chen X S, Lu W, Hu W D 2022 J Infrared Millmeter Waves 41 40Google Scholar

    [26]

    Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [27]

    Wood R W 1902 Philos. Mag. 4 396Google Scholar

    [28]

    Fano U 1941 J. Opt. Soc. Am. 31 213Google Scholar

    [29]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp21–27, pp66–69

    [30]

    Bhat R D R, Panoiu N C, Brueck S R J, Osgood R M 2008 Opt. Express 16 4588Google Scholar

    [31]

    Sefidmooye Azar N, Shrestha V R, Crozier K B 2019 Appl. Phys. Lett. 114 091108Google Scholar

    [32]

    Zhang Y, Meng D, Li X, Yu H, Lai J, Fan Z, Chen C 2018 Opt. Express 26 30862Google Scholar

    [33]

    Nordin L, Petluru P, Kamboj A, Muhowski A J, Wasserman D 2021 Optica 8 1545Google Scholar

    [34]

    Lee S C, Krishna S, Brueck S R J 2011 IEEE Photonics Technol. Lett. 23 935Google Scholar

    [35]

    Vaillancourt J, Mojaverian N, Lu X 2014 IEEE Photonics Technol. Lett. 26 745Google Scholar

    [36]

    Li X, Ye X, Li G, Yu F, Chen J, Zhao Z, Li Z, Chen X 2021 Opt. Mater. Express 11 1167Google Scholar

    [37]

    Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light-Sci. Appl. 10 138Google Scholar

    [38]

    Zhan P, Wang Z L, Dong H, Sun J, Wu J, Wang H T, Zhu S N, Ming N B, Zi J 2006 Adv. Mater. 18 1612Google Scholar

    [39]

    Chu Y, Schonbrun E, Yang T, Crozier K B 2008 Appl. Phys. Lett. 93 181108Google Scholar

    [40]

    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W 2015 Small 11 2392Google Scholar

    [41]

    Stewart J W, Vella J H, Li W, Fan S, Mikkelsen M H 2020 Nat. Mater. 19 158Google Scholar

    [42]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299Google Scholar

    [43]

    Tang X, Wu G f, Lai K W C 2017 J. Mater. Chem. C 5 362Google Scholar

    [44]

    Safaei A, Chandra S, Leuenberger M N, Chanda D 2019 ACS Nano 13 421Google Scholar

    [45]

    Guo Q, Yu R, Li C, Yuan S, Deng B, García de Abajo F J, Xia F 2018 Nat. Mater. 17 986Google Scholar

    [46]

    Suen J Y, Fan K, Montoya J, Bingham C, Stenger V, Sriram S, Padilla W J 2017 Optica 4 276Google Scholar

    [47]

    Shabbir M W, Chandra S, Leuenberger M N 2021 arXiv: 2103.10311

    [48]

    Rogalski A 2012 Opto-Electron. Rev. 20 279Google Scholar

    [49]

    Levine B F 1993 J. Appl. Phys. 74 R1Google Scholar

    [50]

    Schneider H, Liu H C 2007 Quantum Well Infrared Photodetectors (New York: Springer) pp13–36

    [51]

    Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332Google Scholar

    [52]

    Cakmakyapan S, Lu P K, Navabi A, Jarrahi M 2018 Light-Sci. Appl. 7 20Google Scholar

    [53]

    Letka V, Bainbridge A, Craig A P, Al-Saymari F, Marshall A R J 2019 Opt. Express 27 23970Google Scholar

    [54]

    Deotare P B, McCutcheon M W, Frank I W, Khan M, Lončar M 2009 Appl. Phys. Lett. 94 121106Google Scholar

    [55]

    Goldflam M D, Kadlec E A, Olson B V, Klem J F, Hawkins S D, Parameswaran S, Coon W T, Keeler G A, Fortune T R, Tauke-Pedretti A, Wendt J R, Shaner E A, Davids P S, Kim J K, Peters D W 2016 Appl. Phys. Lett. 109 251103Google Scholar

    [56]

    Wang S, Yoon N, Kamboj A, Petluru P, Zheng W, Wasserman D 2018 Appl. Phys. Lett. 112 091104Google Scholar

    [57]

    Law S, Roberts C, Kilpatrick T, Yu L, Ribaudo T, Shaner E A, Podolskiy V, Wasserman D 2014 Phys. Rev. Lett. 112 017401Google Scholar

    [58]

    Zhou Y W, Li Z F, Zhou J, Li N, Zhou X H, Chen P P, Zheng Y L, Chen X S, Lu W 2018 Sci. Rep. 8 15070Google Scholar

    [59]

    Zhen T, Zhou J, Li Z, Chen X 2019 Adv. Opt. Mater. 7 1801627Google Scholar

    [60]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [61]

    Rogalski A, Martyniuk P, Kopytko M 2016 Rep. Prog. Phys. 79 046501Google Scholar

    [62]

    Li J, Li J, Zhou H, Zhang G, Liu H, Wang S, Yi F 2021 Opt. Express 29 22907Google Scholar

    [63]

    Jing Y, Li Z, Li Q, Chen P, Zhou X, Wang H, Li N, Lu W 2016 AIP Adv. 6 045205Google Scholar

    [64]

    Jing Y L, Li Z F, Li Q, Chen X S, Chen P P, Wang H, Li M Y, Li N, Lu W 2016 Sci. Rep. 6 25849Google Scholar

    [65]

    Zhou Y, Li Z, Zhou X, Zhou J, Zheng Y, Li L, Li N, Chen P, Chen X, Lu W 2019 Appl. Phys. Lett. 114 061104Google Scholar

    [66]

    Montoya J A, Tian Z-B, Krishna S, Padilla W J 2017 Opt. Express 25 23343Google Scholar

    [67]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [68]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [69]

    John S 1991 Phys. Today 44 32Google Scholar

    [70]

    Wang L G, Zhu S Y 2010 Phys. Rev. B 81 205444Google Scholar

    [71]

    Gao Y, Cansizoglu H, Polat K G, et al. 2017 Nat. Photonics 11 301Google Scholar

    [72]

    Cansizoglu H, Bartolo-Perez C, Gao Y, Ponizovskaya Devine E, Ghandiparsi S, Polat K G, Mamtaz H H, Yamada T, Elrefaie A F, Wang S Y, Islam M S 2018 Photonics Res. 6 734Google Scholar

    [73]

    Zhou H, Xu S, Lin Y, Huang Y C, Son B, Chen Q, Guo X, Lee K H, Goh S C K, Gong X, Tan C S 2020 Opt. Express 28 10280Google Scholar

    [74]

    Hu W D, Chen X S, Ye Z H, Lu W 2011 Appl. Phys. Lett. 99 091101Google Scholar

    [75]

    Liang J, Hu W, Ye Z, Liao L, Li Z, Chen X, Lu W 2014 J. Appl. Phys. 115 184504Google Scholar

    [76]

    Rabiee-Golgir H, Ghandiparsi S, Devine E P, et al. 2019 Infrared Technology and Applications XLV. 11002 110020TGoogle Scholar

    [77]

    Bomzon Z E, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

    [78]

    Berry M V 1984 Proc. R. Soc. London, Ser. A 392 45Google Scholar

    [79]

    Khorasaninejad M, Chen Wei T, Devlin Robert C, Oh J, Zhu Alexander Y, Capasso F 2016 Science 352 1190Google Scholar

    [80]

    Uenoyama S, Ota R 2021 ACS Photonics 8 1548Google Scholar

    [81]

    Zhang S, Soibel A, Keo S A, Wilson D, Rafol S B, Ting D Z, She A, Gunapala S D, Capasso F 2018 Appl. Phys. Lett. 113 111104Google Scholar

    [82]

    Ning Y, Zhang S, Hu Y, Hao Q, Tang X 2020 Coatings 10 1218Google Scholar

    [83]

    Wenger T, Muller R, Wilson D, Gunapala S D, Soibel A 2021 AIP Adv. 11 085221Google Scholar

    [84]

    Hou H, Zhang Y, Luo Z, Zhang P, Zhao Y 2022 Opt Lasers Eng 150 106849Google Scholar

    [85]

    Mousavi S H, Khanikaev A B, Neuner B, Avitzour Y, Korobkin D, Ferro G, Shvets G 2010 Phys. Rev. Lett. 105 176803Google Scholar

    [86]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D, Lin S Y 2010 Nano Lett. 10 1704Google Scholar

    [87]

    Ogawa S, Komoda J, Masuda K, Kimata M 2013 Opt. Eng. 52 127104Google Scholar

    [88]

    Zhao F, Zhang C, Chang H, Hu X 2014 Plasmonics 9 1397Google Scholar

    [89]

    Liu L, Chen Y, Huang Z, Du W, Zhan P, Wang Z 2016 Sci. Rep. 6 30414Google Scholar

    [90]

    Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527Google Scholar

    [91]

    Schnell M, Alonso-González P, Arzubiaga L, Casanova F, Hueso L E, Chuvilin A, Hillenbrand R 2011 Nat. Photonics 5 283Google Scholar

    [92]

    Korobkin D, Urzhumov Y A, Neuner-Iii B, Zorman C, Zhang Z, Mayergoyz I D, Shvets G 2007 Appl. Phys. A 88 605Google Scholar

    [93]

    Hajian H, Ghobadi A, Butun B, Ozbay E 2018 Opt. Express 26 16940Google Scholar

  • 图 1  人工微纳结构增强长波及甚长波红外探测器的几种主要机制及特点

    Fig. 1.  Major mechanisms and main features of artificial micro- and nano-structures for long- and very-long-wavelength infrared detector enhancement.

    图 2  (a) SPP与介质中传输模的色散关系, k1xk2x分别表示在SPP色散曲线在频率ω1(可见光波段)与ω2(红外光波段)处的水平波矢; (b) 频率ω1处, 传输模在介质中沿着x方向传播的电场示意图; (c) 频率ω1处SPP模式的电场示意图; (d) 频率ω2处, 传输模在介质中沿着x方向传播的电场示意图; (e) 频率ω2处, SPP模式在界面处的电场示意图; (f) Re[kx] 和Im[kz] 曲线示意图

    Fig. 2.  (a) Dispersion relation of SPP and propagation mode in the dielectric, k1x and k2x are the wave vector along the x-direction at frequency ω1 and ω2 on the SPP dispersion curve, respectively; (b) illustration of electric field of propagation mode in the dielectric along the x-direction at frequency ω1; (c) illustration of electric field of SPP mode at frequency ω1; (d) illustration of electric field of propagation mode in dielectric along the x-direction at frequency ω2; (e) illustration of electric field of SPP mode at frequency ω2; (f) schematic of relationship curves of Re[kx] and Im[kz].

    图 3  (a) 混合等离激元结构的石墨烯红外探测器示意图[31]; (b) 小孔纳米天线放大图[31]; (c) 光栅结构示意图; (d) 纳米天线和狭缝示意图[31]; (e) SPP增强超薄二类超晶格探测器示意图[33]; (f) 顶部为势垒阻挡型超薄红外探测器, 底部为二类超晶格能带结构[33]; (g) 探测器及其中不同材料的吸收谱, 插图为 |Hy| 在光电探测器内分布[33]

    Fig. 3.  (a) Schematic of graphene infrared detector with a hybrid plasmonic structure[31]; (b) details of the aperture nanoantenna[31]; (c) schematic of grating structure[31]; (d) schematic of nanoantenna and slit[31]; (e) schematic of SPP enhanced ultrathin type-II superlattice detector[33]; (f) top: nBn ultra-thin infrared detectors, bottom: band structure of type-II superlattices[33]; (g) absorption spectrums of the detector and the respective material layers in the detector. Inset shows the |Hy| distribution of the detector[33].

    图 4  (a) Backside-configured等离激元结构单元器件示意图[35]; (b) backside-configured等离激元结构焦平面阵列的部分像元俯视图[35]

    Fig. 4.  (a) Schematic of a pixel with backside-configured plasmonic structure[35]; (b) top view of several pixels in the backside-configured plasmonic structure FPA[35].

    图 5  (a), (b) 结构1示意图及其吸收谱[37]; (c), (d)结构2的示意图及其吸收谱[37]

    Fig. 5.  (a), (b) Schematic and absorption spectrum of structure 1[37]; (c), (d) schematic and absorption spectrum of structure 2[37]

    图 6  (a) 带有金等离激元结构的HgSe量子点探测器制备方法[43]; (b) 不同等离激元圆盘阵列半径下的增强比[43]; (c) 石墨烯与氧化钒异质结构红外探测器示意图[47]; (d) 氧化钒为绝缘相时, 不同费米能级的石墨烯探测器吸收谱[47]; (e) 氧化钒为金属相时, 不同费米能级的石墨烯探测器吸收谱[47]

    Fig. 6.  (a) Preparation methodology of the HgSe quantum dot detector with Au plasmonic structures[43]; (b) enhancement of different plasmonic disk arrays with different radius[43]; (c) schematic of graphene-HfO2 heterostructure infrared detector[47]; (d) absorption spectrum of the graphene detectors at different Fermi levels when vanadium dioxide is in its insulating phase[47]; (e) absorption spectrum of the graphene detectors at different Fermi levels when vanadium dioxide is in its metallic phase[47].

    图 7  (a) TM和TE偏振光的不同耦合行为[51]; (b) 量子阱探测器的扫描电镜图像[51]; (c) 不同偏振角度下量子阱探测器的光电流谱[51]; (d) 光偏振垂直于石墨烯纳米带下, 波长0.8, 5和20 μm时的场强分布[52]

    Fig. 7.  (a) Different coupling behavior of TM and TE polarized light[51]; (b) scanning electron microscopy image of the quantum well detector[51]; (c) photocurrent spectrum of the quantum well detector under different polarization angles[51]; (d) field intensity distribution of 0.8, 5, and 20 μm when light polarization perpendicular to graphene nanostrips[52].

    图 8  (a) 优化前的等离激元微腔结构中金属和量子阱吸收谱[59]; (b) 优化后的等离激元微腔结构中金属和量子阱吸收谱[59]; (c) 金属微腔量子阱示意图[24]

    Fig. 8.  (a) Absorption spectra of metals and quantum wells in plasmonic microcavity structures before optimization[59]; (b) absorption spectra of metals and quantum wells in plasmonic microcavity structures after optimization[59]; (c) schematic of metal microcavity quantum well[24].

    图 9  (a) MIM量子阱探测器示意图[63]; (b) MIM量子阱探测器和45°耦合的标准量子阱探测器响应谱[63]; (c) 光学方法拓展截止波长的实验值(黑色)和改变材料参数拓展截止波长的计算值(红色)[65]; (d) MIM微腔结构制备流程图[66]

    Fig. 9.  (a) Schematic of MIM quantum well detector[63]; (b) responsivity spectrum of MIM and standard 45° coupled quantum well detector[63]; (c) experiment value (black) of optical method and the calculated value (red) of change material parameters traditional method to extend cut-off wavelength[65]; (d) flow chart of fabrication of MIM microcavity structure[66].

    图 10  (a) 碲镉汞陷光结构红外探测器示意图[75]; (b) 中波红外碲镉汞平面结构和陷光结构探测器吸收谱[76]; (c) 长波红外碲镉汞平面结构探测器、无填充介质陷光结构探测器和填充介质陷光结构探测器吸收谱[76]; (d) 基于金属薄膜横向的趋肤传输模式增强碲镉汞探测器吸收示意图[18]; (e) 碲镉汞平面结构、碲镉汞横向传输模式增强的改进结构在7—11 μm的量子效率[18]

    Fig. 10.  (a) Schematic of the HgCdTe photon-trapping structure infrared detector[75]; (b) absorption spectrum of mid-wavelength infrared HgCdTe plain structure detector and photon-trapping structure detector[76]; (c) absorption spectrum of long-wavelength infrared HgCdTe plain detector, without dielectric-filled photon-trapping structure detector, and dielectric-filled photon-trapping structure detector[76]; (d) schematic of enhanced absorption of HgCdTe detector based on metal thin film horizontal skin propagation mode[18]; (e) quantum efficiencies of HgCdTe plain structure and HgCdTe advanced structure with lateral transmission mode enhancement at 7–11 μm[18].

    图 11  (a) 超透镜集成的长波红外探测器示意图[84]; (b) 有无超透镜结构的长波红外探测在不同光敏面积下的吸收比[84]; (c) 超透镜长波红外探测器在8—14 μm吸收谱[84]

    Fig. 11.  (a) Schematic of metalens integrate with long-wavelength infrared detector[84]; (b) absorptance of long-wavelength infrared detectors with and without metalens under different photosensitive areas[84]; (c) absorptance of infrared detectors with metalens at 8–14 μm[84].

    图 12  (a) 完美电导体表面的一维凹槽阵列示意图, 凹槽参数为宽度a、厚度h和周期 d [21]; (b) 各向异性的有效介质代替凹槽阵列的示意图[21]; (c) a/d = 0.2和h/d = 1时所激发的表面束缚波的色散关系[86]; (d) 二维金属小孔阵列增强量子阱探测器示意图[86]; (e) 有二维金属小孔阵列和无二维金属小孔阵列量子点红外探测器红外响应[86]; (f) 9.39 μm处小孔附近的电场分布[86]

    Fig. 12.  (a) Schematic of a one-dimensional groove array on the surface of a perfect electrical conductor, the groove parameter is width a, depth h and period d[21]; (b) schematic illustration that replaces the groove array by the anisotropic effective dielectric layer[21]; (c) dispersion relation of excited surface bound wave when a/d = 0.2 and h/d = 1[86]; (d) schematic of a two-dimensional metal hole array enhanced quantum well detector[86]; (e) infrared response of quantum dot infrared detectors with and without two-dimensional metal hole arrays[86]; (f) electric field distribution near the hole at 9.39 μm[86].

    图 13  (a) 锥形天线聚焦红外光场的示意图[91]; (b) 近场成像显示的电场|Ez|2分布[91]; (c) 带有正方形小孔阵列的石墨烯/氮化硼/石墨烯多层结构示意图[93]; (d) 石墨烯/氮化硼/石墨烯多层结构吸收谱[93]; (e) 模式[1, 0]处的面内电场分布[93]

    Fig. 13.  (a) Schematic of tapered antenna focusing infrared light field[91]; (b) near-field image showing electric field |Ez|2 distribution[91]; (c) schematic of graphene/hBN/graphene multilayer structure with square hole array[93]; (d) absorption spectrum of graphene/hBN/graphene multilayer structure[93]; (e) in-plane electric field distribution at mode [1, 0][93].

    图 14  人工微纳结构与红外探测器高度集成化的新一代红外探测器发展展望

    Fig. 14.  Development prospect of the new generation of infrared detectors with high-integration of artificial micro- and nano-structures and infrared detectors.

    表 1  不同增强的机制在长波及甚长波红外波段的代表性工作

    Table 1.  Representative work of different enhancement mechanisms in long and very long-wavelength infrared bands.

    增强机制红外材料结构类型器件增强倍率材料吸收率规模其他特性文献
    表面
    等离激元
    牛眼结构436
    (10.2 μm吸收率)
    单元信噪比提高5.2[30]
    石墨烯牛眼结构与纳米狭缝558
    (10.84 μm吸收率)
    0.3595%
    (10.84 μm)
    单元探测率增强31.8[31]
    二类超晶格光栅结构13.5
    (10.4 μm光响应)
    50%
    (10.4 μm)
    单元高温工作
    195 K
    [33]
    量子点金属小孔阵列阵列NEDT提高50%[35]
    局域
    等离激元
    石墨烯圆盘阵列10
    (12.4 μm吸收率)
    32%
    (12.4 μm)
    单元吸收峰动态调节[42]
    量子点圆盘阵列2.08
    (9 μm 光响应)
    单元[43]
    石墨烯小孔阵列单元热响应时间
    1 ms
    [47]
    量子阱金属光栅6
    (14.7 μm 光响应)
    阵列偏振比
    65
    [51]
    谐振腔量子阱金属光栅/谐振腔阵列偏振比
    136
    [58]
    量子阱金属阵列/谐振腔82%
    (12.5 μm)
    阵列低热损耗[59]
    量子阱金属微腔阵列偏振和波长选择[24]
    陷光结构碲镉汞柱状阵列80%
    (8 μm)
    阵列[75]
    碲镉汞小孔阵列5.8
    (10 μm吸收率)
    58%
    (10 μm)
    单元[76]
    碲镉汞柱状阵列7.9
    (9 μm 量子效率)
    55%
    (9 μm)
    阵列小周期、串扰低[18]
    超透镜超表面86%
    (10 μm)
    阵列8—14 μm
    平均收集效率80%
    [84]
    赝等离激元量子点小孔阵列1.3
    (8.8 μm 光响应)
    10%
    (8.8 μm)
    单元[86]
    量子阱金属阵列/金属反射层33
    (14.4 μm 吸收率)
    62%
    (14.5 μm)
    单元宽角度耦合[89]
    下载: 导出CSV
  • [1]

    Ycas G, Giorgetta F R, Baumann E, Coddington I, Herman D, Diddams S A, Newbury N R 2018 Nat. Photonics 12 202Google Scholar

    [2]

    Norton P 2006 Opto-Electron. Rev. 14 1Google Scholar

    [3]

    Wu P, Ye L, Tong L, Wang P, Wang Y, Wang H, Ge H, Wang Z, Gu Y, Zhang K, Yu Y, Peng M, Wang F, Huang M, Zhou P, Hu W 2022 Light-Sci. Appl. 11 6Google Scholar

    [4]

    Rao G A, Mahulikar S P 2005 Aerosp. Sci. Technol. 9 701Google Scholar

    [5]

    For the James Webb Space Telescope (https://www.jwst.nasa.gov)

    [6]

    Xin L 2022 The Innovation 3 100198Google Scholar

    [7]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Physica Sinica 68 120701Google Scholar

    [8]

    Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101Google Scholar

    [9]

    Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L, Lu W 2013 IEEE J. Sel. Top. Quantum Electron. 19 4100107Google Scholar

    [10]

    Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu C, Lei D, Li G, Xiao S, Mei S, Giessen H, zu Heringdorf F M, Qiu C W 2021 eLight 1 5Google Scholar

    [11]

    Xiong J, Wu S T 2021 eLight 1 3Google Scholar

    [12]

    Xie R, Wang P, Wang F, Chen X S, Lu W, Hu W D 2021 Opt. Lett. 46 1361Google Scholar

    [13]

    Li S Q, Xu X, Veetil R M, Valuckas V, Paniagua-Domínguez R, Kuznetsov A I 2019 Science 364 1087Google Scholar

    [14]

    Lin K T, Lin H, Jia B 2020 Nanophotonics 9 3135Google Scholar

    [15]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [16]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [17]

    Farag A, Ubl M, Konzelmann A, Hentschel M, Giessen H 2019 Opt. Express 27 25012Google Scholar

    [18]

    Ge H, Xie R, Chen Y, Wang P, Li Q, Gu Y, Guo J, He J, Wang F, Hu W 2021 Opt. Express 29 22823Google Scholar

    [19]

    Schuster J, Bellotti E 2013 Opt. Express 21 14712Google Scholar

    [20]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar

    [21]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A:Pure Appl. Opt. 7 S97Google Scholar

    [22]

    Bozhevolnyi S I, Jung J 2008 Opt. Express 16 2676Google Scholar

    [23]

    Huber A, Ocelic N, Kazantsev D, Hillenbrand R 2005 Appl. Phys. Lett. 87 081103Google Scholar

    [24]

    Nie X, Zhen H, Huang G, Yin Y, Li S, Chen P, Zhou X, Mei Y, Lu W 2020 Appl. Phys. Lett. 116 161107Google Scholar

    [25]

    郭家祥, 谢润章, 王鹏, 张涛, 张坤, 王海露, 贺婷, 李庆, 王芳, 陈效双, 陆卫, 胡伟达 2022 红外与毫米波学报 41 40Google Scholar

    Guo J X, Xie R Z, Wang P, He T, Li Q, Wang F, Chen X S, Lu W, Hu W D 2022 J Infrared Millmeter Waves 41 40Google Scholar

    [26]

    Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [27]

    Wood R W 1902 Philos. Mag. 4 396Google Scholar

    [28]

    Fano U 1941 J. Opt. Soc. Am. 31 213Google Scholar

    [29]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp21–27, pp66–69

    [30]

    Bhat R D R, Panoiu N C, Brueck S R J, Osgood R M 2008 Opt. Express 16 4588Google Scholar

    [31]

    Sefidmooye Azar N, Shrestha V R, Crozier K B 2019 Appl. Phys. Lett. 114 091108Google Scholar

    [32]

    Zhang Y, Meng D, Li X, Yu H, Lai J, Fan Z, Chen C 2018 Opt. Express 26 30862Google Scholar

    [33]

    Nordin L, Petluru P, Kamboj A, Muhowski A J, Wasserman D 2021 Optica 8 1545Google Scholar

    [34]

    Lee S C, Krishna S, Brueck S R J 2011 IEEE Photonics Technol. Lett. 23 935Google Scholar

    [35]

    Vaillancourt J, Mojaverian N, Lu X 2014 IEEE Photonics Technol. Lett. 26 745Google Scholar

    [36]

    Li X, Ye X, Li G, Yu F, Chen J, Zhao Z, Li Z, Chen X 2021 Opt. Mater. Express 11 1167Google Scholar

    [37]

    Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light-Sci. Appl. 10 138Google Scholar

    [38]

    Zhan P, Wang Z L, Dong H, Sun J, Wu J, Wang H T, Zhu S N, Ming N B, Zi J 2006 Adv. Mater. 18 1612Google Scholar

    [39]

    Chu Y, Schonbrun E, Yang T, Crozier K B 2008 Appl. Phys. Lett. 93 181108Google Scholar

    [40]

    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W 2015 Small 11 2392Google Scholar

    [41]

    Stewart J W, Vella J H, Li W, Fan S, Mikkelsen M H 2020 Nat. Mater. 19 158Google Scholar

    [42]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299Google Scholar

    [43]

    Tang X, Wu G f, Lai K W C 2017 J. Mater. Chem. C 5 362Google Scholar

    [44]

    Safaei A, Chandra S, Leuenberger M N, Chanda D 2019 ACS Nano 13 421Google Scholar

    [45]

    Guo Q, Yu R, Li C, Yuan S, Deng B, García de Abajo F J, Xia F 2018 Nat. Mater. 17 986Google Scholar

    [46]

    Suen J Y, Fan K, Montoya J, Bingham C, Stenger V, Sriram S, Padilla W J 2017 Optica 4 276Google Scholar

    [47]

    Shabbir M W, Chandra S, Leuenberger M N 2021 arXiv: 2103.10311

    [48]

    Rogalski A 2012 Opto-Electron. Rev. 20 279Google Scholar

    [49]

    Levine B F 1993 J. Appl. Phys. 74 R1Google Scholar

    [50]

    Schneider H, Liu H C 2007 Quantum Well Infrared Photodetectors (New York: Springer) pp13–36

    [51]

    Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332Google Scholar

    [52]

    Cakmakyapan S, Lu P K, Navabi A, Jarrahi M 2018 Light-Sci. Appl. 7 20Google Scholar

    [53]

    Letka V, Bainbridge A, Craig A P, Al-Saymari F, Marshall A R J 2019 Opt. Express 27 23970Google Scholar

    [54]

    Deotare P B, McCutcheon M W, Frank I W, Khan M, Lončar M 2009 Appl. Phys. Lett. 94 121106Google Scholar

    [55]

    Goldflam M D, Kadlec E A, Olson B V, Klem J F, Hawkins S D, Parameswaran S, Coon W T, Keeler G A, Fortune T R, Tauke-Pedretti A, Wendt J R, Shaner E A, Davids P S, Kim J K, Peters D W 2016 Appl. Phys. Lett. 109 251103Google Scholar

    [56]

    Wang S, Yoon N, Kamboj A, Petluru P, Zheng W, Wasserman D 2018 Appl. Phys. Lett. 112 091104Google Scholar

    [57]

    Law S, Roberts C, Kilpatrick T, Yu L, Ribaudo T, Shaner E A, Podolskiy V, Wasserman D 2014 Phys. Rev. Lett. 112 017401Google Scholar

    [58]

    Zhou Y W, Li Z F, Zhou J, Li N, Zhou X H, Chen P P, Zheng Y L, Chen X S, Lu W 2018 Sci. Rep. 8 15070Google Scholar

    [59]

    Zhen T, Zhou J, Li Z, Chen X 2019 Adv. Opt. Mater. 7 1801627Google Scholar

    [60]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [61]

    Rogalski A, Martyniuk P, Kopytko M 2016 Rep. Prog. Phys. 79 046501Google Scholar

    [62]

    Li J, Li J, Zhou H, Zhang G, Liu H, Wang S, Yi F 2021 Opt. Express 29 22907Google Scholar

    [63]

    Jing Y, Li Z, Li Q, Chen P, Zhou X, Wang H, Li N, Lu W 2016 AIP Adv. 6 045205Google Scholar

    [64]

    Jing Y L, Li Z F, Li Q, Chen X S, Chen P P, Wang H, Li M Y, Li N, Lu W 2016 Sci. Rep. 6 25849Google Scholar

    [65]

    Zhou Y, Li Z, Zhou X, Zhou J, Zheng Y, Li L, Li N, Chen P, Chen X, Lu W 2019 Appl. Phys. Lett. 114 061104Google Scholar

    [66]

    Montoya J A, Tian Z-B, Krishna S, Padilla W J 2017 Opt. Express 25 23343Google Scholar

    [67]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [68]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [69]

    John S 1991 Phys. Today 44 32Google Scholar

    [70]

    Wang L G, Zhu S Y 2010 Phys. Rev. B 81 205444Google Scholar

    [71]

    Gao Y, Cansizoglu H, Polat K G, et al. 2017 Nat. Photonics 11 301Google Scholar

    [72]

    Cansizoglu H, Bartolo-Perez C, Gao Y, Ponizovskaya Devine E, Ghandiparsi S, Polat K G, Mamtaz H H, Yamada T, Elrefaie A F, Wang S Y, Islam M S 2018 Photonics Res. 6 734Google Scholar

    [73]

    Zhou H, Xu S, Lin Y, Huang Y C, Son B, Chen Q, Guo X, Lee K H, Goh S C K, Gong X, Tan C S 2020 Opt. Express 28 10280Google Scholar

    [74]

    Hu W D, Chen X S, Ye Z H, Lu W 2011 Appl. Phys. Lett. 99 091101Google Scholar

    [75]

    Liang J, Hu W, Ye Z, Liao L, Li Z, Chen X, Lu W 2014 J. Appl. Phys. 115 184504Google Scholar

    [76]

    Rabiee-Golgir H, Ghandiparsi S, Devine E P, et al. 2019 Infrared Technology and Applications XLV. 11002 110020TGoogle Scholar

    [77]

    Bomzon Z E, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

    [78]

    Berry M V 1984 Proc. R. Soc. London, Ser. A 392 45Google Scholar

    [79]

    Khorasaninejad M, Chen Wei T, Devlin Robert C, Oh J, Zhu Alexander Y, Capasso F 2016 Science 352 1190Google Scholar

    [80]

    Uenoyama S, Ota R 2021 ACS Photonics 8 1548Google Scholar

    [81]

    Zhang S, Soibel A, Keo S A, Wilson D, Rafol S B, Ting D Z, She A, Gunapala S D, Capasso F 2018 Appl. Phys. Lett. 113 111104Google Scholar

    [82]

    Ning Y, Zhang S, Hu Y, Hao Q, Tang X 2020 Coatings 10 1218Google Scholar

    [83]

    Wenger T, Muller R, Wilson D, Gunapala S D, Soibel A 2021 AIP Adv. 11 085221Google Scholar

    [84]

    Hou H, Zhang Y, Luo Z, Zhang P, Zhao Y 2022 Opt Lasers Eng 150 106849Google Scholar

    [85]

    Mousavi S H, Khanikaev A B, Neuner B, Avitzour Y, Korobkin D, Ferro G, Shvets G 2010 Phys. Rev. Lett. 105 176803Google Scholar

    [86]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D, Lin S Y 2010 Nano Lett. 10 1704Google Scholar

    [87]

    Ogawa S, Komoda J, Masuda K, Kimata M 2013 Opt. Eng. 52 127104Google Scholar

    [88]

    Zhao F, Zhang C, Chang H, Hu X 2014 Plasmonics 9 1397Google Scholar

    [89]

    Liu L, Chen Y, Huang Z, Du W, Zhan P, Wang Z 2016 Sci. Rep. 6 30414Google Scholar

    [90]

    Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527Google Scholar

    [91]

    Schnell M, Alonso-González P, Arzubiaga L, Casanova F, Hueso L E, Chuvilin A, Hillenbrand R 2011 Nat. Photonics 5 283Google Scholar

    [92]

    Korobkin D, Urzhumov Y A, Neuner-Iii B, Zorman C, Zhang Z, Mayergoyz I D, Shvets G 2007 Appl. Phys. A 88 605Google Scholar

    [93]

    Hajian H, Ghobadi A, Butun B, Ozbay E 2018 Opt. Express 26 16940Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231657
    [2] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [3] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [4] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [5] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [6] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [7] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [8] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [9] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [10] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [11] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [12] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [13] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [14] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [15] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [16] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [17] 黄建亮, 卫炀, 马文全, 杨涛, 陈良惠. InAs/InxGa1-xSb二类超晶格红外探测器的吸收波长与电子-空穴波函数交叠的研究. 物理学报, 2010, 59(5): 3099-3106. doi: 10.7498/aps.59.3099
    [18] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [19] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
计量
  • 文章访问数:  7693
  • PDF下载量:  633
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-04-03
  • 上网日期:  2022-05-29
  • 刊出日期:  2022-06-05

/

返回文章
返回