搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介观尺寸原子链中的等离激元:紧束缚模型

辛旺 吴仍来 薛红杰 余亚斌

引用本文:
Citation:

介观尺寸原子链中的等离激元:紧束缚模型

辛旺, 吴仍来, 薛红杰, 余亚斌

Plasmonic excitations in mesoscopic-sized atomic chains:a tight-binding model

Xin Wang, Wu Reng-Lai, Xue Hong-Jie, Yu Ya-Bin
PDF
导出引用
  • 本文运用紧束缚模型对介观尺寸原子链的等离激发进行了系统的研究, 通过量子响 应理论和相无规近似得到了等离激元的本征频率方程, 通过该方程计算了系统中等离子体的激发能量, 并分别对体系的本征振荡以及外电场作用在原子链上发生共振的情况进行了研究. 结果表明, 体系在外场作用下发生共振时, 偶极矩的峰值与等离子体的激发态相对应, 说明外场此时激发了等离激元; 体系处在共振情况下, 电荷振荡的幅度远远大于非共振的情况, 相对来说体系的电荷虚部的共振更为明显. 对于体系的本征等离振荡频率, 同等长度时等离子体的激发能量总是大于同级的单电子激发能量; 等离激元的能谱与原子链的长度和电子密度以及系统的库仑关联强度都有很大关系; 在原子链长度保持不变的情况下, 等离子体的激发能量随电子数目的变化以半满为中心呈对称关系.
    Plasmonic excitations in mesoscopic-sized atomic chains are investigated by employing the tight-binding model. Based on the quantum response theory and random phase approximation, a plasma oscillation eigen-frequency equation is derived for calculation of the plasmon energy spectrum. The plasmon energy spectrum has been numerically calculated, and the eigen-oscillation of the system and the resonance behavior under the external electric field applied on the atom chain are investigated, respectively. Dependence of plasmonic excitation energy on the length of systems and electron density has been discussed. Results suggest that in the case of resonance, the resonant peak of dipole moment is corresponding to the plasmonic excitation, and this indicates that the external electric field excites the plasmon of the system. In resonance the oscillation amplitude of the charge is much larger than that in the case of non-resonance, especially the imaginary part of the charge has a more obvious enhancement. For the eigen-oscillations, the plasmonic excitation energy is greater than the single-particle excitation state at the same level; the length of atomic chains, the electron density, and the strength of Coulomb correlation have significant effects on the plasmon spectroscopy. For the given atom-chain length, with variation of number of electrons, the plasmonic excitation energy varies symmetrically around the half-filling. This indicates that the plasmon spectrum of the system is symmetrical for the electrons and holes.
    • 基金项目: 国家自然科学基金(批准号: 10774041)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10774041).
    [1]

    Nie S, Emory S R 1997 Science 257 1102

    [2]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [3]

    Zhang X F, Yan X 2013 Acta Phys. Sin. 62 037805 (in Chinese) [张兴坊, 闫昕 2013 物理学报 62 037805]

    [4]

    Han Q Y, Tang J C, Zhang C, Wang C, Ma H Q, Yu L, Jiao R Z 2012 Acta Phys. Sin. 61 135202 (in Chinese) [韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍 2012 物理学报 61 135202]

    [5]

    Sun Y, Xia Y 2002 Science 298 2176

    [6]

    Sönnichsen C, Franzl T, Wilk T, Plessen G V, Feldmann J, Wilson O, Mulvaney P 2002 Phys. Rev. Lett. 88 077402

    [7]

    Cong C, Wu D J, Liu X J, Li B 2012 Acta Phys. Sin. 61 037301 (in Chinese) [丛超, 吴大建, 刘晓峻, 李勃 2012 物理学报 61 037301]

    [8]

    Hervieux P A, Bigot J Y 2004 Phys. Rev. Lett. 92 197402

    [9]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature(London) 424 824

    [10]

    Pendry J B, Martin-Moreno L, Garcia-Vidia F J 2004 Science 305 847

    [11]

    Yao H M, Chen X N, Chen X Z 2005 Acta Phys. Sin. 54 2645 (in Chinese) [姚汉民, 陈旭南, 陈献忠 2005 物理学报 54 2645]

    [12]

    Wang R Z, Li P F, Yan X H 2002 Acta Phys. Sin. 51 2139 (in Chinese) [王如志, 李鹏飞, 颜晓红 2002 物理学报 51 2139]

    [13]

    Chen Y, Yu L P, Zhu Z Y 2002 Acta Phys. Sin. 51 1571 (in Chinese) [陈一, 余礼平, 朱志远 2002 物理学报 51 1571]

    [14]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [15]

    Bell A T. 2003 Science 299 1688

    [16]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. U.S.A. 100 13549

    [17]

    Nordlander P, Halas N J 2010 Phys. Chem. C 114 7378

    [18]

    Muniz R A, Haas S 2009 Phys. Rev. B 80 045413

    [19]

    Cassidy A, Grigorenko I, Haas S 2008 Phys Rev. B 77 245404

    [20]

    Xu H X, Käll M 2002 Phys. Rev. Lett. 89 246802

    [21]

    Yan J, Gao S W 2008 Phys. Rev. B 78 235413

    [22]

    Yan J, Yuan Z, Gao S W 2007 Phys. Rev. Lett. 98 216602

  • [1]

    Nie S, Emory S R 1997 Science 257 1102

    [2]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [3]

    Zhang X F, Yan X 2013 Acta Phys. Sin. 62 037805 (in Chinese) [张兴坊, 闫昕 2013 物理学报 62 037805]

    [4]

    Han Q Y, Tang J C, Zhang C, Wang C, Ma H Q, Yu L, Jiao R Z 2012 Acta Phys. Sin. 61 135202 (in Chinese) [韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍 2012 物理学报 61 135202]

    [5]

    Sun Y, Xia Y 2002 Science 298 2176

    [6]

    Sönnichsen C, Franzl T, Wilk T, Plessen G V, Feldmann J, Wilson O, Mulvaney P 2002 Phys. Rev. Lett. 88 077402

    [7]

    Cong C, Wu D J, Liu X J, Li B 2012 Acta Phys. Sin. 61 037301 (in Chinese) [丛超, 吴大建, 刘晓峻, 李勃 2012 物理学报 61 037301]

    [8]

    Hervieux P A, Bigot J Y 2004 Phys. Rev. Lett. 92 197402

    [9]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature(London) 424 824

    [10]

    Pendry J B, Martin-Moreno L, Garcia-Vidia F J 2004 Science 305 847

    [11]

    Yao H M, Chen X N, Chen X Z 2005 Acta Phys. Sin. 54 2645 (in Chinese) [姚汉民, 陈旭南, 陈献忠 2005 物理学报 54 2645]

    [12]

    Wang R Z, Li P F, Yan X H 2002 Acta Phys. Sin. 51 2139 (in Chinese) [王如志, 李鹏飞, 颜晓红 2002 物理学报 51 2139]

    [13]

    Chen Y, Yu L P, Zhu Z Y 2002 Acta Phys. Sin. 51 1571 (in Chinese) [陈一, 余礼平, 朱志远 2002 物理学报 51 1571]

    [14]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [15]

    Bell A T. 2003 Science 299 1688

    [16]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. U.S.A. 100 13549

    [17]

    Nordlander P, Halas N J 2010 Phys. Chem. C 114 7378

    [18]

    Muniz R A, Haas S 2009 Phys. Rev. B 80 045413

    [19]

    Cassidy A, Grigorenko I, Haas S 2008 Phys Rev. B 77 245404

    [20]

    Xu H X, Käll M 2002 Phys. Rev. Lett. 89 246802

    [21]

    Yan J, Gao S W 2008 Phys. Rev. B 78 235413

    [22]

    Yan J, Yuan Z, Gao S W 2007 Phys. Rev. Lett. 98 216602

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, 2022, 71(11): 110703. doi: 10.7498/aps.71.20220380
    [3] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质. 物理学报, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [4] 常静, 陈基. 一维纳米限域物质的结构. 物理学报, 2022, 71(12): 126101. doi: 10.7498/aps.71.20220035
    [5] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [6] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [7] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [8] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [9] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [10] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [12] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [13] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [14] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [16] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [17] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [18] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [19] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  5432
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-19
  • 修回日期:  2013-05-28
  • 刊出日期:  2013-09-05

/

返回文章
返回