搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免掺杂、非对称异质接触晶体硅太阳电池的研究进展

赵生盛 徐玉增 陈俊帆 张力 侯国付 张晓丹 赵颖

引用本文:
Citation:

免掺杂、非对称异质接触晶体硅太阳电池的研究进展

赵生盛, 徐玉增, 陈俊帆, 张力, 侯国付, 张晓丹, 赵颖

Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts

Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying
PDF
HTML
导出引用
  • 免掺杂、非对称异质接触的新型太阳电池由于近几年的飞速发展, 理论转化效率已达到28%, 具有较大的发展空间, 引起了人们的重视. 由于传统晶硅太阳电池产业存在生产设备成本高、原材料易燃易爆等诸多限制, 市场对太阳电池产业低成本、绿色无污染的期待越来越高, 极大地增加了免掺杂、非对称异质接触的新型太阳电池研究和开发的必要性. 为了进一步加快免掺杂、非对称异质接触晶体硅太阳电池的研究进度, 本文对其发展现状进行了综述, 着重讨论了过渡金属氧化物(TMO)载流子选择性运输的基本原理、制备技术以及空穴传输层、电子传输层和钝化层对基于TMO构建的免掺杂、非对称异质接触(DASH)太阳电池性能的影响, 以期对电池的工作机理、材料选择有更深刻的认识, 为新型高效的DASH太阳电池制备提供指导.
    Due to the rapid development of dopant free asymmetric heterogeneous contacts in recent years, the theoretical conversion efficiency can reach 28%, which has large room for development and has attracted one’s attention. With the expectation of low cost and green pollution-free solar cell, the traditional crystalline silicon solar cell has many limitations due to its high equipment cost and flammable and explosive raw materials. It greatly increases the necessity of research and development of new solar cells with no doping and asymmetric heterogeneous contacts. The new solar cell is safe and environmental friendly due to the multi-faceted advantages of dopant-free asymmetric heterogeneous contact (DASH) solar cells constructed by transition metal oxide (TMO): the TMO has been widely studied as an alternative option, because of its wide band gap, little parasitic absorption, as well as repressed auger recombination, and conducing to the increase of the short-circuit current density of the solar cells; the DASH solar cell has high efficiency potential, its theoretical efficiency has reached 28%, and it can be produced by low-cost technology such as thermal evaporation or solution method; it always avoids using flammable, explosive and toxic gases in the manufacturing process. Our group proposed using MoOx as a hole selective contact and ZnO as an electron selective contact to construct a new and efficient DASH solar cell. It has achieved a conversion efficiency of 16.6%. Another device, in which MoOx is used as the hole selective contact and n-nc-Si:H as the electron selective, was fabricated, and its efficiency has reached 14.4%. In order to further speed up the research progress of the dopant-free asymmetric heterogeneous contact crystalline silicon solar cell, the development status is reviewed, and the basic principle and preparation technology of selective transport of transition metal oxide (TMO) carriers are discussed. And the effect of the hole transport layer, the electron transport layer and the passivation layer on the performance of the TMO dopant-free asymmetric heterogeneous contact (DASH) solar cells are discussed in order to have an in-depth understanding of the working mechanism and material selection of the battery, thereby providing guidance in preparing new and efficient DASH solar cells.
      通信作者: 侯国付, gfhou@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61474066, 61504069)、天津市自然科学基金(批准号: 15JCYBJC21200)、 高等学校学科创新引智计划(批准号: B16027)、光学信息技术科学教育部重点实验室开放基金(批准号: 2017KFKT015)和中央高校基本科研业务费资助的课题.
      Corresponding author: Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474066, 61504069), the Natural Science Foundation of Tianjin, China (Grant No. 15JCYBJC21200), the Key Laboratory of Optical Information Technical Science, Ministry of Education of China (Grant No. 2017KFKT015), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社)第2—4页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) pp2–4 (in Chinese)

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nature Energy 2 17032Google Scholar

    [3]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C 2014 Appl. Phys. Lett. 104 1184

    [5]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2019 Sol. Energy Mater. Sol. Cells (in Press)

    [6]

    Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J 2018 Adv. Sci. 5

    [7]

    Melskens J, Loo B W H V D, Macco B, Black L E, Smit S, Kessels W M M 2018 IEEE J. Photovoltaics 8 373Google Scholar

    [8]

    Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutterfella C M, Chen T, Ota H, Schaler E W, Wolf S D 2016 Nature Energy 1 15031Google Scholar

    [9]

    Imran H, Abdolkader T M, Butt N Z 2016 IEEE Trans. Electron Devices 63 3584Google Scholar

    [10]

    Um H D, Kim N, Lee K, Hwang I, Seo J H, Seo K 2016 Nano Lett. 16 981Google Scholar

    [11]

    Wu W, Lin W, Bao J, Liu Z, Liu B, Qiu K, Chen Y, Shen H 2017 RSC Adv. 7 23851Google Scholar

    [12]

    Masmitjà G, Gerling L G, Ortega P, Puigdollers J, Martín I, Voz C, Alcubilla R 2017 J. Mater. Chem. A 5 9182Google Scholar

    [13]

    Cuevas A, Allen T, Bullock J, Wan Y, Zhang X 2014 Photovoltaic Specialist Conference pp1–6

    [14]

    Würfel U, Cuevas A, Würfel P 2014 IEEE J. Photovoltaics 5 461

    [15]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [16]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, Mcdonnell S, Azcatl A, Carraro C, Ma B, Maboudian R 2014 Nano Lett. 14 967Google Scholar

    [17]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 1

    [18]

    Sun T, Wang R, Liu R, Wu C, Zhong Y, Liu Y, Wang Y, Han Y, Xia Z, Zou Y 2017 Phys. Status Solidi RRL 1700107

    [19]

    Yang X, Bi Q, Ali H, Davis K, Schoenfeld W V, Weber K 2016 Adv. Mater. 28 5891Google Scholar

    [20]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nature Mater. 11 76Google Scholar

    [21]

    Vijayan R A, Essig S, Wolf S D, Ramanathan B G, Löper P, Ballif C, Varadharajaperumal M 2018 IEEE J. Photovoltaics 8 473Google Scholar

    [22]

    Messmer C, Bivour M, Schön J, Glunz S W, Hermle M 2018 IEEE J. Photovoltaics 1

    [23]

    Neusel L, Bivour M, Hermle M 2017 Energy Procedia 124 425Google Scholar

    [24]

    Bivour M, Zähringer F, Ndione P, Hermle M, Bivour M, Zähringer F, Ndione P, Hermle M 2017 Energy Procedia 124 400Google Scholar

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar

    [26]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hesslerwyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D 2015 Appl. Phys. Lett. 107 1433

    [27]

    Wu W, Bao J, Jia X, Liu Z, Cai L, Liu B, Song J, Shen H 2016 Phys. Status Solidi RRL 10 662Google Scholar

    [28]

    Menchini F, Grilli M L, Dikonimos T, Mittiga A, Serenelli L, Salza E, Chierchia R, Tucci M 2016 Phys. Status Solidi 13

    [29]

    Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Zhou Y, Luo S, Li J, Wang N 2017 ACS Appl. Mater. Interfaces 9 2439Google Scholar

    [30]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M 2015 Science 350 944Google Scholar

    [31]

    Yang X, Weber K, Hameiri Z, De Wolf S 2017 Prog. Photovoltaics Res. Appl. 25

    [32]

    Bullock J, Wan Y, Xu Z, Essig S, Hettick M, Wang H, Ji W, Boccard M, Cuevas A, Ballif C 2018 ACS Energy Lett. 3

    [33]

    Liu Y, Zhang J, Wu H, Cui W, Wang R, Ding K, Lee S T, Sun B 2017 Nano Energy 34 257Google Scholar

    [34]

    Khan F, Baek S H, Kim J H 2015 Nanoscale 8 1007

    [35]

    Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A 2017 Appl. Surface Science 423

    [36]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [37]

    Zhang C, Zhang Y, Guo H, Jiang Q, Dong P, Zhang C 2018 Energies 11

    [38]

    He L, Jiang C, Wang H, Lai D, Rusli 2012 Appl. Phys. Lett. 100 12344

    [39]

    Zielke D, Niehaves C, Lövenich W, Elschner A, Hörteis M, Schmidt J 2015 Energy Procedia 77 331Google Scholar

    [40]

    Ling Z, He J, He X, Liao M, Liu P, Yang Z, Ye J, Gao P 2017 IEEE J. Photovoltaics 1

    [41]

    Tong H, Yang Z, Wang X, Liu Z, Chen Z, Ke X, Sui M, Tang J, Yu T, Ge Z 2018 Adv. Energy Mater. 1702921

    [42]

    Bao J, Wu W, Liu Z, Shen H 2016 AIP Adv. 6 96

    [43]

    Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C 2015 Energy Procedia 77 446Google Scholar

    [44]

    Yang X, Weber K Photovoltaic Specialist Conference pp1-4

    [45]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. ar Cells 150 32Google Scholar

    [46]

    Wan Y, Samundsett C, Bullock J, Hettick M, Allen T, Yan D, Peng J, Wu Y, Cui J, Javey A 2017 Adv. Energy Mater. 7

    [47]

    Wang F, Zhao S, Liu B, Li Y, Ren Q, Du R, Wang N, Wei C, Chen X, Wang G 2017 Nano Energy 39

    [48]

    Kamei K, Miyachi M, Tanaka K 2015 Phys. Chem. Chem. Phys. 17 27409Google Scholar

    [49]

    Macco B 2016 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)

    [50]

    Greiner M T, Chai L, Helander M G, Tang W M, Lu Z H 2012 Adv. Funct. Mater. 22 4557Google Scholar

    [51]

    Boccard M, Ding L, Koswatta P, Bertoni M, Holman Z Photovoltaic Specialist Conference pp1-3

    [52]

    Xie F, Choy W C, Wang C, Li X, Zhang S, Hou J 2013 Adv. Mater. 25 2051Google Scholar

    [53]

    Soultati A, Douvas A M, Georgiadou D G, Palilis L C, Bein T, Feckl J M, Gardelis S, Fakis M, Kennou S, Falaras P 2014 Adv. Energy Mater. 4 1441

    [54]

    Mews M, Lemaire A, Korte L 2017 IEEE J. Photovoltaics 1

    [55]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [56]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265Google Scholar

    [57]

    Liu R, Tan M, Zhang X, Xu L, Chen J, Chen Y, Tang X, Wan L 2018 Sol. Energy Mater. Sol. Cells 174 584Google Scholar

    [58]

    Kim A, Won Y, Woo K, Jeong S, Moon J 2014 Adv. Funct. Mater. 24 2462Google Scholar

    [59]

    De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar

    [60]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M, Angermann H 2017 Appl. Surface Science 395 78Google Scholar

    [61]

    Feldmann F, Reichel C, Müller R, Hermle M 2017 Sol. Energy Mater. Sol. Cells 159 265Google Scholar

    [62]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energy Procedia 77 840Google Scholar

    [63]

    Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y, Li Y T 2017 Chin. Phys. B 26 481

    [64]

    Yang J H, Kang S J, Hong Y, Lim K S 2014 IEEE Electron Device Lett. 35 96Google Scholar

    [65]

    Hu J, Cheng Q, Fan R, Zhou H 2017 Solar RRL 1

    [66]

    Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T 2017 Nature Energy 2 17009Google Scholar

    [67]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L 2015 Energy & Environ. Sci. 9 81

    [68]

    Zhu S, Yao X, Ren Q, Zheng C C, Li S, Tong Y, Shi B, Guo S, Fan L, Ren H 2017 Nano Energy 45

  • 图 1  钝化接触太阳电池结构及载流子输运方式[13]

    Fig. 1.  Passivated contact solar cell structure and carrier transport mode[13].

    图 2  能带结构示意图

    Fig. 2.  energy band structure diagram.

    图 3  NiO/c-Si/TiO2结构太阳电池示意图[9]

    Fig. 3.  Schematics of the NiO/c-Si/TiO2 solar cell structure[9].

    图 4  (a) MoOx/c-Si异质结太阳电池结构的示意图; (b)通过扫描电子显微镜成像的横截面图[16]

    Fig. 4.  (a) Schematics of the MoOx/n-Si heterojunction solar cell structure; (b) cross section imaged by scanning electron microscopy[16].

    图 5  全背接触结构的太阳电池示意图[10]

    Fig. 5.  Schematics of the full back contact solar cell structure[10].

    图 6  (a)BackPEDOT太阳电池正面; (b)BackPEDOT太阳电池横截面示意图[39]

    Fig. 6.  (a)BackPEDOT solar cell front; (b) schematic cross-section of the BackPEDOT solar cell[39].

    图 7  MLBC太阳电池结构[11]

    Fig. 7.  The structure of MLBC solar cell[11].

    图 8  使用MoOx作为空穴选择性接触的硅异质结电池结构 (a)n-a-Si:H作为电子选择性接触; (b)ZnO:B作为电子选择性接触[47]

    Fig. 8.  Silicon heterojunction cell structure using MoOx as hole selective contact; (a) n-a-Si:H as electron selective contact; (b) ZnO:B as electron selectivecontact[47].

    图 9  采用MoOx作为空穴选择性接触, 分别n+-a-Si:H和ZnO:B作为电子选择性接触的硅异质结电池特性 (a)J-V曲线; (b)EQE曲线[47]

    Fig. 9.  Characteristics of silicon heterojunction cells with MoOx as hole selective contact, n+-a-Si:H and ZnO:B as electron selective contact respectively: (a) J-V curve; (b) EQE curve[47].

    图 10  (a)在c-Si上沉积MoOx薄膜的横截面图像; (b)MoOx和c-Si的交界处图像; (c)EDS线扫描区域的横截面STEM图像; (d)使用EDS线测量每个元素的组成分布, 显示在MoOx和c-Si之间形成薄的SiOx[35]

    Fig. 10.  (a) The image of an as-deposited MoOx film on c-Si; (b) the image of the MoOx and c-Si interface; (c) cross-sectional STEM image for the region of the EDS line scan; (d) compositional distribution of each element measured using the EDS line scan showing a thinSiOx layer formed between the MoOx and the c-Si[35].

    表 1  基于TMO载流子选择性接触的硅异质结太阳电池研究现状

    Table 1.  Summary of Silicon Heterojunction Solar Cells Based on TMO Carrier Selective Contact.

    Device ArchitectureJsc/mA·cm-2Voc/mVFFEfficiency/%Reference(Year)
    MoOx/nc-Si/n a-Si:H37.85806514.3Battaglia et al.[16](2014)
    MoOx/i a-Si:H/c-Si/i a-Si:H/n a-Si:H38.6725.480.3622.5Jonas et al.[26](2015)
    p+-Si/p-c-Si/MoOx376167216.4Bullock et al.[43](2015)
    p+-Si/n-c-Si/TiO239.263979.119.8Yang et al.[44](2015)
    MoOx/a-Si:H(i)/c-Si/a-Si:H(i)/LiFx37.07716.473.1519.42Bullock et al.[8](2016)
    MoOx/ia-Si:H/nc-Si/ia-Si:H/n a-Si:H39.471167.218.8Battaglia et al.[17](2016)
    V2Ox/c-Si/ n a-Si:H34.460675.315.7Gerling et al.[15](2016)
    MoOx/c-Si/ n a-Si:H34.158168.813.6Gerling et al.[15](2016)
    WOx/c-Si/ n a-Si:H33.35776512.5Gerling et al.[15](2016)
    p+-Si/n-c-Si/SiO2/TiO239.56508020.5Yang et al.[45](2016)
    V2Ox /Au /V2Ox38.765175.4919.02Wu et al.[11](2017)
    p+-Si/n-c-Si/MgOx39.562880.620Wan et al.[46](2017)
    MoOx/i a-Si:H/c-Si/i a-Si:H/BZO38.159972.716.6Wang et al.[47](2017)
    MoOx/a-Si:H(i)/c-Si/a-Si:H(i)/TiOx/LiF38.470676.220.7Bullock et al.[32](2018)
    下载: 导出CSV
  • [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社)第2—4页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) pp2–4 (in Chinese)

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nature Energy 2 17032Google Scholar

    [3]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C 2014 Appl. Phys. Lett. 104 1184

    [5]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2019 Sol. Energy Mater. Sol. Cells (in Press)

    [6]

    Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J 2018 Adv. Sci. 5

    [7]

    Melskens J, Loo B W H V D, Macco B, Black L E, Smit S, Kessels W M M 2018 IEEE J. Photovoltaics 8 373Google Scholar

    [8]

    Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutterfella C M, Chen T, Ota H, Schaler E W, Wolf S D 2016 Nature Energy 1 15031Google Scholar

    [9]

    Imran H, Abdolkader T M, Butt N Z 2016 IEEE Trans. Electron Devices 63 3584Google Scholar

    [10]

    Um H D, Kim N, Lee K, Hwang I, Seo J H, Seo K 2016 Nano Lett. 16 981Google Scholar

    [11]

    Wu W, Lin W, Bao J, Liu Z, Liu B, Qiu K, Chen Y, Shen H 2017 RSC Adv. 7 23851Google Scholar

    [12]

    Masmitjà G, Gerling L G, Ortega P, Puigdollers J, Martín I, Voz C, Alcubilla R 2017 J. Mater. Chem. A 5 9182Google Scholar

    [13]

    Cuevas A, Allen T, Bullock J, Wan Y, Zhang X 2014 Photovoltaic Specialist Conference pp1–6

    [14]

    Würfel U, Cuevas A, Würfel P 2014 IEEE J. Photovoltaics 5 461

    [15]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [16]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, Mcdonnell S, Azcatl A, Carraro C, Ma B, Maboudian R 2014 Nano Lett. 14 967Google Scholar

    [17]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 1

    [18]

    Sun T, Wang R, Liu R, Wu C, Zhong Y, Liu Y, Wang Y, Han Y, Xia Z, Zou Y 2017 Phys. Status Solidi RRL 1700107

    [19]

    Yang X, Bi Q, Ali H, Davis K, Schoenfeld W V, Weber K 2016 Adv. Mater. 28 5891Google Scholar

    [20]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nature Mater. 11 76Google Scholar

    [21]

    Vijayan R A, Essig S, Wolf S D, Ramanathan B G, Löper P, Ballif C, Varadharajaperumal M 2018 IEEE J. Photovoltaics 8 473Google Scholar

    [22]

    Messmer C, Bivour M, Schön J, Glunz S W, Hermle M 2018 IEEE J. Photovoltaics 1

    [23]

    Neusel L, Bivour M, Hermle M 2017 Energy Procedia 124 425Google Scholar

    [24]

    Bivour M, Zähringer F, Ndione P, Hermle M, Bivour M, Zähringer F, Ndione P, Hermle M 2017 Energy Procedia 124 400Google Scholar

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar

    [26]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hesslerwyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D 2015 Appl. Phys. Lett. 107 1433

    [27]

    Wu W, Bao J, Jia X, Liu Z, Cai L, Liu B, Song J, Shen H 2016 Phys. Status Solidi RRL 10 662Google Scholar

    [28]

    Menchini F, Grilli M L, Dikonimos T, Mittiga A, Serenelli L, Salza E, Chierchia R, Tucci M 2016 Phys. Status Solidi 13

    [29]

    Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Zhou Y, Luo S, Li J, Wang N 2017 ACS Appl. Mater. Interfaces 9 2439Google Scholar

    [30]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M 2015 Science 350 944Google Scholar

    [31]

    Yang X, Weber K, Hameiri Z, De Wolf S 2017 Prog. Photovoltaics Res. Appl. 25

    [32]

    Bullock J, Wan Y, Xu Z, Essig S, Hettick M, Wang H, Ji W, Boccard M, Cuevas A, Ballif C 2018 ACS Energy Lett. 3

    [33]

    Liu Y, Zhang J, Wu H, Cui W, Wang R, Ding K, Lee S T, Sun B 2017 Nano Energy 34 257Google Scholar

    [34]

    Khan F, Baek S H, Kim J H 2015 Nanoscale 8 1007

    [35]

    Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A 2017 Appl. Surface Science 423

    [36]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [37]

    Zhang C, Zhang Y, Guo H, Jiang Q, Dong P, Zhang C 2018 Energies 11

    [38]

    He L, Jiang C, Wang H, Lai D, Rusli 2012 Appl. Phys. Lett. 100 12344

    [39]

    Zielke D, Niehaves C, Lövenich W, Elschner A, Hörteis M, Schmidt J 2015 Energy Procedia 77 331Google Scholar

    [40]

    Ling Z, He J, He X, Liao M, Liu P, Yang Z, Ye J, Gao P 2017 IEEE J. Photovoltaics 1

    [41]

    Tong H, Yang Z, Wang X, Liu Z, Chen Z, Ke X, Sui M, Tang J, Yu T, Ge Z 2018 Adv. Energy Mater. 1702921

    [42]

    Bao J, Wu W, Liu Z, Shen H 2016 AIP Adv. 6 96

    [43]

    Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C 2015 Energy Procedia 77 446Google Scholar

    [44]

    Yang X, Weber K Photovoltaic Specialist Conference pp1-4

    [45]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. ar Cells 150 32Google Scholar

    [46]

    Wan Y, Samundsett C, Bullock J, Hettick M, Allen T, Yan D, Peng J, Wu Y, Cui J, Javey A 2017 Adv. Energy Mater. 7

    [47]

    Wang F, Zhao S, Liu B, Li Y, Ren Q, Du R, Wang N, Wei C, Chen X, Wang G 2017 Nano Energy 39

    [48]

    Kamei K, Miyachi M, Tanaka K 2015 Phys. Chem. Chem. Phys. 17 27409Google Scholar

    [49]

    Macco B 2016 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)

    [50]

    Greiner M T, Chai L, Helander M G, Tang W M, Lu Z H 2012 Adv. Funct. Mater. 22 4557Google Scholar

    [51]

    Boccard M, Ding L, Koswatta P, Bertoni M, Holman Z Photovoltaic Specialist Conference pp1-3

    [52]

    Xie F, Choy W C, Wang C, Li X, Zhang S, Hou J 2013 Adv. Mater. 25 2051Google Scholar

    [53]

    Soultati A, Douvas A M, Georgiadou D G, Palilis L C, Bein T, Feckl J M, Gardelis S, Fakis M, Kennou S, Falaras P 2014 Adv. Energy Mater. 4 1441

    [54]

    Mews M, Lemaire A, Korte L 2017 IEEE J. Photovoltaics 1

    [55]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [56]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265Google Scholar

    [57]

    Liu R, Tan M, Zhang X, Xu L, Chen J, Chen Y, Tang X, Wan L 2018 Sol. Energy Mater. Sol. Cells 174 584Google Scholar

    [58]

    Kim A, Won Y, Woo K, Jeong S, Moon J 2014 Adv. Funct. Mater. 24 2462Google Scholar

    [59]

    De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar

    [60]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M, Angermann H 2017 Appl. Surface Science 395 78Google Scholar

    [61]

    Feldmann F, Reichel C, Müller R, Hermle M 2017 Sol. Energy Mater. Sol. Cells 159 265Google Scholar

    [62]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energy Procedia 77 840Google Scholar

    [63]

    Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y, Li Y T 2017 Chin. Phys. B 26 481

    [64]

    Yang J H, Kang S J, Hong Y, Lim K S 2014 IEEE Electron Device Lett. 35 96Google Scholar

    [65]

    Hu J, Cheng Q, Fan R, Zhou H 2017 Solar RRL 1

    [66]

    Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T 2017 Nature Energy 2 17009Google Scholar

    [67]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L 2015 Energy & Environ. Sci. 9 81

    [68]

    Zhu S, Yao X, Ren Q, Zheng C C, Li S, Tong Y, Shi B, Guo S, Fan L, Ren H 2017 Nano Energy 45

  • [1] 赵珂楠, 李晟, 芦增星, 劳斌, 郑轩, 李润伟, 汪志明. SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控. 物理学报, 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [2] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体. 物理学报, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [3] 劳斌, 郑轩, 李晟, 汪志明. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展. 物理学报, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [4] 王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红. 基于激子阻挡层的高效率绿光钙钛矿电致发光二极管. 物理学报, 2020, 69(3): 038501. doi: 10.7498/aps.69.20191263
    [5] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [6] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [7] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质. 物理学报, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [8] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响. 物理学报, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [10] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [11] 赵理, 刘东洋, 刘东梅, 陈平, 赵毅, 刘式墉. 4,4,4-三(N-3-甲基苯基-N-苯基氨基)三苯胺掺杂MoOx作为空穴传输层对有机太阳电池性能的影响. 物理学报, 2012, 61(8): 088802. doi: 10.7498/aps.61.088802
    [12] 哈日巴拉, 师兰, 姜磊, 郭金毓, 原光瑜, 王李波, 刘宗瑞. 纳米TiO2叶片状阵列电极的制备及其在染料敏化太阳电池中电子的输运性能. 物理学报, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [13] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [14] 霍新霞, 王畅, 张秀梅, 王利光. Au电极连接富勒烯C32分子的电子结构与传输特性. 物理学报, 2010, 59(7): 4955-4960. doi: 10.7498/aps.59.4955
    [15] 尹丽琴, 彭俊彪. 聚合物P3HT在不同退火温度下的空穴传输特性. 物理学报, 2009, 58(5): 3456-3460. doi: 10.7498/aps.58.3456
    [16] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [17] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [18] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究. 物理学报, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [19] 谭明秋, 陶向明, 何军辉. SrRuO3的电子结构与磁性研究. 物理学报, 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
    [20] 胡文英, 曾雉, 郑庆祺, 黄美纯. 电子间关联作用对过渡金属氧化物磁矩的影响. 物理学报, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
计量
  • 文章访问数:  12047
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 修回日期:  2018-12-06
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回