搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴电场对LHAASO观测面宇宙线次级光子的影响

阿西克古 周勋秀 张云峰

引用本文:
Citation:

雷暴电场对LHAASO观测面宇宙线次级光子的影响

阿西克古, 周勋秀, 张云峰

Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory

Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng
PDF
HTML
导出引用
  • LHAASO实验利用到达探测器的宇宙线次级粒子来获取原初宇宙线信息, 而次级粒子中成分最多的是光子. 雷暴期间, 大气电场会影响次级带电粒子, 进而改变地面光子信息. 本文利用Monte Carlo方法, 模拟研究了近地雷暴电场对LHAASO观测面次级光子的影响. 模拟中使用了一个厚度均匀、方向垂直于地面的电场模型. 结果表明, 雷暴电场中光子的数目和能量变化显著, 且依赖于电场强度. 当电场为–1000 V/cm时, 光子数目增加23%, 能谱变软, 当能量小于2 MeV时, 数目增加超过29%. 当电场为–1700 V/cm时, 光子数目呈指数增长, 达到279%, 能谱相较于–1000 V/cm变得更软, 当能量小于2 MeV时, 数目增加超过361%, 符合相对论电子逃逸雪崩机理. 这些变化主要源于电子被大气电场加速, 数目增加(–1000 V/cm中增加65%, –17000 V/cm中增加992%), 能谱变软. 同时, 高能自由电子通过轫致辐射产生光子, 导致光子的数目和能量也发生变化, 且变化趋势与电子的一致. 本模拟结果有助于理解雷暴期间LHAASO实验数据变化特点, 并为大气电场加速宇宙线次级带电粒子的物理机制提供信息.
    Large high altitude air shower observatory (LHAASO) is a complex of extensive air shower (EAS) detector arrays, located on the Mt. Haizi (29°21' N, 100°08' E) at an altitude of 4410 m a. s. l., Daocheng, Sichuan Province, China. The information about primary cosmic rays can be obtained by using data from secondary particles measured at LHAASO, with photons make up the majority among these secondary particles. During thunderstorms, the atmospheric electric field can affect secondary charged particles (mainly positrons and electrons), thus changing the information of photons on the ground. In this work, Monte Carlo simulations are performed to investigate the effects of near-ground thunderstorm electric fields on cosmic ray secondary photons at LHAASO. A simple model with a vertical and uniform atmospheric electric field in a layer of atmosphere is used in our simulations. During thunderstorms, the number and energy of photons are found to significantly change and strongly depend on the electric field strength. In a field of –1000 V/cm (below the threshold of the relativistic runaway electron avalanche (RREA) process), the number of photons is increased by 23%. Also, the spectrum of photons softens, and the increased number of photons with energy less than 2 MeV exceeds 29%. In an electric field of –1700 V/cm (above the threshold of the RREA process), the number of photons experiences exponential growth, with an increase of 279%. The spectrum of photons becomes softer than that at –1000 V/cm, and the increased number with energy less than 2 MeV is more than 361%. It is consistent with the theory of RREA. For these phenomena of photons at LHAASO, the main factor is that the number of positrons and electrons are increased due to the acceleration of negative electric field on electrons, with increase of 65% in –1000 V/cm and 992% in –1700 V/cm, and the spectrum of positrons and electrons soften. Newborn free positrons/electrons may undergo bremsstrahlung and deposit part of their energy into photons, causing the change of number and energy of photons to follow roughly the same pattern as positrons and electrons. The simulation results can provide the information for understanding the variations of the data detected by LHAASO during thunderstorms and the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.
      通信作者: 阿西克古, axkg@my.swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12375102, U2031101)和太阳能技术集成及应用推广四川省高等学校重点实验室资金项目(批准号: TYNSYS-2023-Y-04)资助的课题.
      Corresponding author: Axikegu, axkg@my.swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375102, U2031101) and the Solar Energy Integration Technology Popularization and Application Key Laboratory of Sichuan Province, China (Grant No. TYNSYS-2023-Y-04).
    [1]

    Qie X S, Yuan S F, Chen Z X, et al. 2021 Sci. China Earth Sci. 64 10Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [4]

    Tsuchiya H, Enoto T, Torii T, et al. 2009 Phys. Rev. Lett. 102 255003Google Scholar

    [5]

    Hariharan B, Chandra A, Dugad S R, et al. 2019 Phys. Rev. Lett. 122 105101Google Scholar

    [6]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [7]

    Gurevich A V, Milikh G M 1992 Phys. Lett. A 165 463Google Scholar

    [8]

    Dwyer J R 2003 Res. Lett. 30 2055Google Scholar

    [9]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [10]

    Alexeenko V V, Chernyaev A B, Chudakov A E, et a1. 1985 Proceeding of 19th International Cosmic Ray Conference. (La Jolla. USA: International Union of Pure and Applied Physics) pp352−355

    [11]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299Google Scholar

    [12]

    Bartoli B, Bernardini P, Bi X J, et al. 2018 Phys. Rev. D 97 042001Google Scholar

    [13]

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501]Google Scholar

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses)Google Scholar

    [14]

    Chilingarian A, Mailyan B, Vanyan L 2012 Atmos. Res. 114-115 1Google Scholar

    [15]

    Lindy N C, Benton E R, Beasley W H, et al. 2018 J. Atmos. Solar-Terr. Phys. 179 435Google Scholar

    [16]

    Yan R R, Huang D H, Zhao B, Axi K G, Zhou X X 2020 Chin. Astron. Astr. 44 146Google Scholar

    [17]

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses) [何会海, 张勇 2003 高能物理与核物理 27 1106]Google Scholar

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses)Google Scholar

    [18]

    Axikegu, Bartoli B, Bernardini P, et al. 2022 Phys. Rev. D 106 022008Google Scholar

    [19]

    Grieder P K F 2010 Extensive Air Showers (Berlin: Springer

    [20]

    Fishman G F, Bhat P N, Mallozzi R, et al. 1994 Science 264 1313Google Scholar

    [21]

    Smith D M, Lopez L I, Lin R P, et al. 2005 Science 307 1085Google Scholar

    [22]

    Briggs M S, Fishman G J, Connaughton V, et al. 2010 J. Geophys. Res. 115 A07323Google Scholar

    [23]

    Tavani M, Marisaldi M, Labanti C, et al. 2011 Phys. Rev. Lett. 106 018501Google Scholar

    [24]

    Neubert T, Østgaard N, Reglero V, et al. 2020 Science 367 183Google Scholar

    [25]

    Yoshida S, Morimoto T, Ushio T, et al. 2008 Geophys. Res. Lett. 35 L10804Google Scholar

    [26]

    Abbasi R U, Abu-Zayyad T, Allen M, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [27]

    Wada Y, Enoto T, Nakazawa K, et al. 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [28]

    Köhn C, Diniz G, Harakeh M N 2017 J. Geophys. Res. Atmos. 122 1365Google Scholar

    [29]

    McCarthy M P, Parks G K 1985 Geophys. Res. Lett. 12 393Google Scholar

    [30]

    Eack K B, Beasley W H, David R W, et al. 1996 J. Geophys. Res. 101 29637Google Scholar

    [31]

    Chilingarian A, Daryan A, Arakelyan A K, et al. 2021 Phys. Rev. D 82 043009Google Scholar

    [32]

    Torii T, Sugita T, Tanabe S, et al. 2009 Geophys. Res. Lett. 36 L13804Google Scholar

    [33]

    Torii T, Takeishi M, Hosono T 2002 J. Geophys. Res. 107 4324Google Scholar

    [34]

    Tsuchiya H, Enoto T, Yamada S, et al. 2007 Phys. Rev. Lett. 99 165002Google Scholar

    [35]

    Aharonian F, An Q, Axikegu, et al. 2023 Chin. Phys. C 47 015001Google Scholar

    [36]

    Cao Z, Aharonian F, An Q, et al. 2021 Science 373 425Google Scholar

    [37]

    Ma X H, Bi Y J, Chao Z, et al. 2022 Chin. Phys. C 46 030001Google Scholar

    [38]

    陈松战, 赵静, 刘烨, 等 2017 核电子学与探测技术 37 1101Google Scholar

    Chen S Z, Zhan J, Liu Y, et al. 2017 Nucl. Electron. Detect. Technol. 37 1101Google Scholar

    [39]

    Aharonian F, An Q, Axikegu, et al. 2021 Chin. Phys. C 45 085002Google Scholar

    [40]

    Heck D, Knapp J, Capdevielle J N, et al. 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers Wissenschaftliche Berichte, FZKA-6019

    [41]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [42]

    NOAA national centers for environmental information, Magnetic Field Calculators: IGRF model 562 (1590-2024) https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

    [43]

    Marshall T C, Stolzenburg M, Maggio C R, et al. 2005 Geophys. Res. Lett. 32 L03813Google Scholar

    [44]

    Chilingarian A, Hovsepyan G, Soghomonyan S, Zazyan M, Zelenyy M 2018 Phys. Rev. D 98 082001Google Scholar

    [45]

    Axi K G, Zhou X X, Huang Z C, et al. 2022 Astrophys. Space Sci. 367 30Google Scholar

    [46]

    Chum J, Langer R, Baše J, et al. 2020 Earth Planets Space 72 28Google Scholar

    [47]

    Michimoto K J 1993 Atmos. Electr. 13 33Google Scholar

    [48]

    Dorman L I, Dorman I V, Iucci N, et al. 2003 J. Geophys. Res. 108 1181Google Scholar

    [49]

    Bethe H A 1930 Annalen Phys. 5 325Google Scholar

    [50]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1Google Scholar

  • 图 1  不加电场时光子和电子的数目(a)和比值(b)随大气深度的变化

    Fig. 1.  The number of photons and electrons/positrons (a) and their ratios (b) as a function of atmospheric depth in absence of a field.

    图 2  在–1700 V/cm的电场中, 电子和光子的数目随大气深度的变化(电场面积: 524—599 g/cm2)

    Fig. 2.  The number of electrons/positrons and photons as a function of atmospheric depth in a field of –1700 V/cm (electric field area: 524–599 g/cm2).

    图 3  在–1700 V/cm的电场中, 电子和光子的数目变化百分比随大气深度的变化(电场面积: 524—599 g/cm2)

    Fig. 3.  Percent change of electrons/positrons and photons as a function of atmospheric depth in a field of –1700 V/cm (electric field area: 524–599 g/cm2).

    图 4  在–1000 V/cm的电场中, 电子和光子的数目随大气深度的变化(电场面积: 524—599 g/cm2)

    Fig. 4.  The number of electrons/positrons and photons as a function of atmospheric depth in a field of –1000 V/cm (electric field area: 524–599 g/cm2).

    图 5  在–1000 V/cm的电场中, 电子和光子数目的变化(a)及变化百分比(b)随大气深度的变化(电场面积: 524—599 g/cm2)

    Fig. 5.  Change (a) and percent change (b) of electrons/positrons and photons number as a function of atmospheric depth in a field of –1000 V/cm (electric field area: 524–599 g/cm2).

    图 6  (a)不加电场时电子和光子数目随能量的变化; (b)归一化后的结果

    Fig. 6.  The number (a) and normalized number (b) of electrons/positrons and photons as a function of energy in absence of a field.

    图 7  (a)不同电场中电子和光子数目随能量的分布; (b) –1700 V/cm的电场中, 能量低于m的新增电子和光子数目与新增总电子和总光子数目之比随能量的变化

    Fig. 7.  (a) The number of electrons/positrons and photons as a function of energy in absence of a field and in a field of –1700 V/cm; (b) the ratios of increasing number with energy less than m to total number as a function of energy in a field of –1700 V/cm.

    图 8  在–1700 V/cm的电场中, 电子和光子的数目变化百分比随能量的变化

    Fig. 8.  Percent change of electrons/positrons and photons as a function of energy in a field of –1700 V/cm.

    图 9  不同电场中电子和光子数目随能量的分布

    Fig. 9.  The number of electrons/positrons and photons as a function of energy in absence of a field and in a field of –1000 V/cm.

    图 10  在–1000 V/cm电场中, 电子和光子数目变化百分比随能量的变化

    Fig. 10.  Percent change of electrons/positrons and photons as a function of energy in a field of –1000 V/cm.

    图 11  在–1000 V/cm电场中, 电子和光子数目积分变化百分比随能量的变化

    Fig. 11.  Integral percent change of electrons/positrons and photons as a function of energy in a field of –1000 V/cm.

  • [1]

    Qie X S, Yuan S F, Chen Z X, et al. 2021 Sci. China Earth Sci. 64 10Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [4]

    Tsuchiya H, Enoto T, Torii T, et al. 2009 Phys. Rev. Lett. 102 255003Google Scholar

    [5]

    Hariharan B, Chandra A, Dugad S R, et al. 2019 Phys. Rev. Lett. 122 105101Google Scholar

    [6]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [7]

    Gurevich A V, Milikh G M 1992 Phys. Lett. A 165 463Google Scholar

    [8]

    Dwyer J R 2003 Res. Lett. 30 2055Google Scholar

    [9]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [10]

    Alexeenko V V, Chernyaev A B, Chudakov A E, et a1. 1985 Proceeding of 19th International Cosmic Ray Conference. (La Jolla. USA: International Union of Pure and Applied Physics) pp352−355

    [11]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299Google Scholar

    [12]

    Bartoli B, Bernardini P, Bi X J, et al. 2018 Phys. Rev. D 97 042001Google Scholar

    [13]

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501]Google Scholar

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses)Google Scholar

    [14]

    Chilingarian A, Mailyan B, Vanyan L 2012 Atmos. Res. 114-115 1Google Scholar

    [15]

    Lindy N C, Benton E R, Beasley W H, et al. 2018 J. Atmos. Solar-Terr. Phys. 179 435Google Scholar

    [16]

    Yan R R, Huang D H, Zhao B, Axi K G, Zhou X X 2020 Chin. Astron. Astr. 44 146Google Scholar

    [17]

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses) [何会海, 张勇 2003 高能物理与核物理 27 1106]Google Scholar

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses)Google Scholar

    [18]

    Axikegu, Bartoli B, Bernardini P, et al. 2022 Phys. Rev. D 106 022008Google Scholar

    [19]

    Grieder P K F 2010 Extensive Air Showers (Berlin: Springer

    [20]

    Fishman G F, Bhat P N, Mallozzi R, et al. 1994 Science 264 1313Google Scholar

    [21]

    Smith D M, Lopez L I, Lin R P, et al. 2005 Science 307 1085Google Scholar

    [22]

    Briggs M S, Fishman G J, Connaughton V, et al. 2010 J. Geophys. Res. 115 A07323Google Scholar

    [23]

    Tavani M, Marisaldi M, Labanti C, et al. 2011 Phys. Rev. Lett. 106 018501Google Scholar

    [24]

    Neubert T, Østgaard N, Reglero V, et al. 2020 Science 367 183Google Scholar

    [25]

    Yoshida S, Morimoto T, Ushio T, et al. 2008 Geophys. Res. Lett. 35 L10804Google Scholar

    [26]

    Abbasi R U, Abu-Zayyad T, Allen M, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [27]

    Wada Y, Enoto T, Nakazawa K, et al. 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [28]

    Köhn C, Diniz G, Harakeh M N 2017 J. Geophys. Res. Atmos. 122 1365Google Scholar

    [29]

    McCarthy M P, Parks G K 1985 Geophys. Res. Lett. 12 393Google Scholar

    [30]

    Eack K B, Beasley W H, David R W, et al. 1996 J. Geophys. Res. 101 29637Google Scholar

    [31]

    Chilingarian A, Daryan A, Arakelyan A K, et al. 2021 Phys. Rev. D 82 043009Google Scholar

    [32]

    Torii T, Sugita T, Tanabe S, et al. 2009 Geophys. Res. Lett. 36 L13804Google Scholar

    [33]

    Torii T, Takeishi M, Hosono T 2002 J. Geophys. Res. 107 4324Google Scholar

    [34]

    Tsuchiya H, Enoto T, Yamada S, et al. 2007 Phys. Rev. Lett. 99 165002Google Scholar

    [35]

    Aharonian F, An Q, Axikegu, et al. 2023 Chin. Phys. C 47 015001Google Scholar

    [36]

    Cao Z, Aharonian F, An Q, et al. 2021 Science 373 425Google Scholar

    [37]

    Ma X H, Bi Y J, Chao Z, et al. 2022 Chin. Phys. C 46 030001Google Scholar

    [38]

    陈松战, 赵静, 刘烨, 等 2017 核电子学与探测技术 37 1101Google Scholar

    Chen S Z, Zhan J, Liu Y, et al. 2017 Nucl. Electron. Detect. Technol. 37 1101Google Scholar

    [39]

    Aharonian F, An Q, Axikegu, et al. 2021 Chin. Phys. C 45 085002Google Scholar

    [40]

    Heck D, Knapp J, Capdevielle J N, et al. 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers Wissenschaftliche Berichte, FZKA-6019

    [41]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [42]

    NOAA national centers for environmental information, Magnetic Field Calculators: IGRF model 562 (1590-2024) https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

    [43]

    Marshall T C, Stolzenburg M, Maggio C R, et al. 2005 Geophys. Res. Lett. 32 L03813Google Scholar

    [44]

    Chilingarian A, Hovsepyan G, Soghomonyan S, Zazyan M, Zelenyy M 2018 Phys. Rev. D 98 082001Google Scholar

    [45]

    Axi K G, Zhou X X, Huang Z C, et al. 2022 Astrophys. Space Sci. 367 30Google Scholar

    [46]

    Chum J, Langer R, Baše J, et al. 2020 Earth Planets Space 72 28Google Scholar

    [47]

    Michimoto K J 1993 Atmos. Electr. 13 33Google Scholar

    [48]

    Dorman L I, Dorman I V, Iucci N, et al. 2003 J. Geophys. Res. 108 1181Google Scholar

    [49]

    Bethe H A 1930 Annalen Phys. 5 325Google Scholar

    [50]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1Google Scholar

  • [1] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [2] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [3] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [4] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证. 物理学报, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [5] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [6] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [7] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究. 物理学报, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [8] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [9] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟. 物理学报, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [10] 丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙. 初始溅射粒子密度对烧蚀粒子密度和速度分布的影响. 物理学报, 2010, 59(5): 3331-3335. doi: 10.7498/aps.59.3331
    [11] 章法强, 杨建伦, 李正宏, 叶凡, 徐荣昆. 厚闪烁体内次级中子对快中子图像质量的影响研究. 物理学报, 2009, 58(2): 1316-1320. doi: 10.7498/aps.58.1316
    [12] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟. 物理学报, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [13] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [14] 高国良, 钱昌吉, 李 洪, 谷温静, 黄晓虹, 叶高翔. 无格点基底表面的杂质分布对分枝状凝聚体的影响. 物理学报, 2006, 55(7): 3349-3354. doi: 10.7498/aps.55.3349
    [15] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [16] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟. 物理学报, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [17] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [18] 高国良, 钱昌吉, 李 洪, 黄晓虹, 谷温静, 叶高翔. 含杂质无格点基底表面分枝状凝聚体的计算机模拟. 物理学报, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [19] 吴锋民, 施建青, 吴自勤. 高温下金属薄膜生长初期的模拟研究. 物理学报, 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  414
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-09
  • 修回日期:  2024-04-08
  • 上网日期:  2024-04-29
  • 刊出日期:  2024-06-20

/

返回文章
返回