-
采用蒙特-卡罗(Monte Carlo)模拟方法,研究了初始溅射粒子密度对其传输中的密度和速度分布以及环境气体密度分布的影响.结果表明,随着初始溅射粒子密度增大,烧蚀粒子和环境气体高密度峰的交叠区离开靶的最大距离减小,被衬底反弹后,距靶的最小距离减小,烧蚀粒子的速度分布随初始溅射粒子密度增大而变宽,当初始溅射粒子密度大于8.33×1025 m-3时,出现速度劈裂现象.所得结论为进一步定量研究纳米晶粒的成核机理提供了基础.
-
关键词:
- Monte Carlo模拟 /
- 烧蚀粒子 /
- 密度分布 /
- 速度分布
The influence of the density of initial ablated-particle on the spatial density distribution of the particles (Si and He) and the velocity distribution of the Si-particles was investigated via Monte Carlo simulation. With the increase of the initial ablated-particle density, both the maximum distance and the minimum distance after rebound of the mixed region from the target are decreased, and the width of the velocity distribution is increased. The splitting of the velocity was observed when the initial ablated-particle density was greater than 8.3×1025 m-3. These results give a good reference for further study of the Si nanoparticle nucleation.[1] [1]Douglas H L, Geohegan D B, Purtzky A A 1996 Science 273 898
[2] [2]Sharma A K, Thareja R K 2005 Appl. Surf. Sci. 243 68
[3] [3]Harilal S S 2007 J. Appl. Phys. 102 123306
[4] [4]Wood R F, Chen K R, Leboeuf J N, Puretzky A A, Geohegan D B 1997 Phys. Rew. Lett. 79 1571
[5] [5]George S, Kumar A, Singh R K, Nampooori V P N 2009 Appl. Phys. Lett. 94 141501
[6] [6]Zhang D M, Li Z H, Huang M T, Zhang M J, Guan L, Zou M Q, Zhong Z C 2001 Acta Phys. Sin. 50 914 (in Chinese) [张端明、李智华、黄明涛、张美军、关丽、邹明清、钟志成 2001 物理学报 50 914]
[7] [7]Tatiana E I, Hermamn J, Delaporte, Sentis M 2002 Phys. Rew. E 66 066406
[8] [8]Zhang S D, Hang W J 2001 Acta Phys. Sin. 50 1512 (in Chinese) [张树东、 张为俊 2001 物理学报 50 1512]
[9] [9]Han M, Gong Y C, Zhou J F, Yin C R, Song F Q, Muto N, Takiya T, Iwata Y 2002 Phys. Lett. A 302 182
[10] ]Franklin S R, Thareja R K 2001 Appl. Surf. Sci. 277 15
[11] ]Garrelie F, Aubreton J, Catherinot A 1998 Appl. Phys. Lett. 83 5075
[12] ]Wang Y L, Chu L Z, Li Y L, Fu G S 2009 Micro & Nano Lett. 4 39
[13] ]Harilal S S, Bindhu C V, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 93 2380
[14] ]Neogi A, Mishra A, Thareja 1998 Appl. Phys. 83 2381
[15] ]Chu L Z, Lu L F, Wang Y L, Fu G S 2007 Acta Phys. Sin. 56 3374 (in Chinese) [褚立志、卢丽芳、王英龙、傅广生 2007 物理学报 56 3374]
-
[1] [1]Douglas H L, Geohegan D B, Purtzky A A 1996 Science 273 898
[2] [2]Sharma A K, Thareja R K 2005 Appl. Surf. Sci. 243 68
[3] [3]Harilal S S 2007 J. Appl. Phys. 102 123306
[4] [4]Wood R F, Chen K R, Leboeuf J N, Puretzky A A, Geohegan D B 1997 Phys. Rew. Lett. 79 1571
[5] [5]George S, Kumar A, Singh R K, Nampooori V P N 2009 Appl. Phys. Lett. 94 141501
[6] [6]Zhang D M, Li Z H, Huang M T, Zhang M J, Guan L, Zou M Q, Zhong Z C 2001 Acta Phys. Sin. 50 914 (in Chinese) [张端明、李智华、黄明涛、张美军、关丽、邹明清、钟志成 2001 物理学报 50 914]
[7] [7]Tatiana E I, Hermamn J, Delaporte, Sentis M 2002 Phys. Rew. E 66 066406
[8] [8]Zhang S D, Hang W J 2001 Acta Phys. Sin. 50 1512 (in Chinese) [张树东、 张为俊 2001 物理学报 50 1512]
[9] [9]Han M, Gong Y C, Zhou J F, Yin C R, Song F Q, Muto N, Takiya T, Iwata Y 2002 Phys. Lett. A 302 182
[10] ]Franklin S R, Thareja R K 2001 Appl. Surf. Sci. 277 15
[11] ]Garrelie F, Aubreton J, Catherinot A 1998 Appl. Phys. Lett. 83 5075
[12] ]Wang Y L, Chu L Z, Li Y L, Fu G S 2009 Micro & Nano Lett. 4 39
[13] ]Harilal S S, Bindhu C V, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 93 2380
[14] ]Neogi A, Mishra A, Thareja 1998 Appl. Phys. 83 2381
[15] ]Chu L Z, Lu L F, Wang Y L, Fu G S 2007 Acta Phys. Sin. 56 3374 (in Chinese) [褚立志、卢丽芳、王英龙、傅广生 2007 物理学报 56 3374]
计量
- 文章访问数: 8419
- PDF下载量: 656
- 被引次数: 0