搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近地雷暴电场与羊八井地面宇宙线关联的模拟研究

周勋秀 王新建 黄代绘 贾焕玉 吴超勇

引用本文:
Citation:

近地雷暴电场与羊八井地面宇宙线关联的模拟研究

周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇

Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China)

Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong
PDF
导出引用
  • 雷暴期间地面宇宙线强度变化的研究对理解大气电场加速宇宙线次级带电粒子的物理机理具有重要意义. 分析西藏羊八井ARGO实验中2012年大气电场的数据后发现, 近地雷暴电场的强度可达1000 V/cm甚至更高. 用Monte Carlo方法模拟研究了近地雷暴电场与羊八井地面宇宙线强度的关联. 当雷暴电场强度(取1500 V/cm)大于逃逸电场时, 宇宙线次级粒子中正、负电子的数目呈指数增长, 在大气深度约520 g/cm2处达到极大值, 与Gurevich等提出的相对论电子逃逸雪崩机理和Dwyer理论相符. 当雷暴电场强度小于逃逸电场时, 在所有负电场范围和大于600 V/cm的正电场范围, 总电子数目随电场强度的增大而增加; 当正电场小于400 V/cm时, 总电子数目均出现一定幅度的下降; 在电场为400600 V/cm范围内, 总电子数目的变化与原初粒子的能量有关, 原初能量小于80 GeV时, 其次级粒子中总电子数目增加, 原初能量在80120 GeV 范围内时, 总电子数目变化不明显, 原初能量大于120 GeV时, 总电子数目出现下降, 下降幅度约4%. 模拟结果可对羊八井ARGO实验的观测结果给予合理的解释.
    Coincident study on the intensity change of the ground cosmic rays during thunderstorms is very important for understanding the acceleration mechanism of secondary charged particles caused by atmospheric electric field. It is found that the strength of the near earth thunderstorm electric field can be up to 1000 V/cm or even higher from ARGO-YBJ (where YBJ stands for Yangbajing, 4300 m a.s.l., Tibet, China) data in 2012. In this paper, Monte Carlo simulations are performed by using CORSIKA program to study the correlations between the intensity of the ground cosmic rays and the near earth thunderstorm electric field at YBJ. When the atmospheric electric field strength is higher than the threshold field strength (ERB) for the development of a runaway breakdown process, the total number of electrons and positrons is exponentially increases. At an electric field strength of 1500 V/cm, the number increases exponentially and reaches a maximum value at an atmospheric depth of ~520 g/cm2, where the electric field is slightly stronger than the threshold field strength. These results are consistent with the theoretical results of relativistic runaway electron avalanche (RREA) which was proposed by Gurevich et al. (Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463) and also supports Dwyer's theory. The total number of electrons and positrons increases with the strength of the field in the negative field or in the positive field greater than 600 V/cm, while a certain degree of decline occurs in the positive field less than 400 V/cm. In the range 400-600 V/cm, the energy of the primary proton should be taken into account. For the primary energy that is lower than 80 GeV, the total number of electrons and positrons increases. And it does not change obviously when the energy is between 80 GeV and 120 GeV. For the primary energy exceeds 120 GeV, the number drops off, and the decrease is of ~4%. During thunderstorms, a short duration occurs in which the single particle counting rate increases as energy lowers, while a decrease happens with energy becoming higher than that from ARGO-YBJ data. Our preliminary results can give reasonable explanations to the experimental observations of ARGO-YBJ.
    • 基金项目: 国家自然科学基金(批准号: 11175147, 11475141)和中央高校基本科研业务费专项资金(批准号: 2682014CX091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175147, 11475141) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014CX091).
    [1]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32D

    [2]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [3]

    Cramer E S, Dwyer J R, Arabshahi S, Vodopiyanov I B, Liu N, Rassoul H K 2014 J. Geophy. Res. Space Phys. 119 7794

    [4]

    Alexeenko V V, Chernyaev A B, Chudakov A E, Khaerdinov N S, Ozrokov S K, Sborshikov V G 1985 Proceedings of the 19th International Cosmic Ray Conference La Jolla, USA, August 11-23, 1985 p352

    [5]

    Vernetto S 2001 Proceedings of the 27th International Cosmic Ray Conference Hamburg, Germany, August 7-15, 2001 p4165

    [6]

    Tsuchiya H, Enoto T, Torii T, Nakazawa K, Yuasa T, Torii S, Fukuyama T, Yamaguchi T, Kato H, Okano M, Takita M, Makishima K 2009 Phys. Rev. Lett. 102 255003

    [7]

    Chilingarian A, Daryan A, Arakelyan K, Hovhannisyan A, Mailyan B, Melkumyan L, Hovsepyan G, Chilingaryan S, Reymers A, Vanyan L 2010 Phys. R. D 82 043009

    [8]

    Chilingarian A, Hovsepyan G, Hovhannisyan A 2011 Phys. R. D 83 062001

    [9]

    Wang J F, Qie X S, Lu H, Zhang J L, Yu X X, Shi F 2012 Acta Phys. Sin. 61 159202 (in Chinese) [王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰 2012 物理学报 61 159202]

    [10]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299

    [11]

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501 (in Chinese) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501

    [12]

    Zhou X M ,Ye N, Zhu F R, Jia H Y 2011 Proceedings of the 32th International Cosmic Ray Conferenc Beijing, China, August 11-18, 2011 p287

    [13]

    Bielajew A F 1988 Electron Transport in \bm E and \bm B Fields, in Monte Carlo Transport of Electrons and Photons (New York: Plenum Press) pp421-434

    [14]

    Dwyer J R, Uman M A 2014 Physics Reports 534 147

    [15]

    Schellart P, Trinh T N G, Buitink S 2015 Phys. Rev. Lett. 114 165001

    [16]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201 (in Chinese) [刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201]

    [17]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804

    [18]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M, Krehbiel P R, Hamlin T, Thomas R J, Rison W 2005 Geophys. Res. Lett. 32 L03813

    [19]

    Xu B, He H, Yang X Y, Bie Y G, Lü Q H 2012 Acta Phys. Sin. 61 175203 (in Chinese) [徐斌, 贺华, 杨晓艳, 别业广, 吕清花 2012 物理学报 61 175203]

    [20]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [21]

    Symbalisty E M D, Roussel-Dupre R, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575

    [22]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1

    [23]

    Bethe H A 1930 Annalen der Physik 397 325

  • [1]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32D

    [2]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [3]

    Cramer E S, Dwyer J R, Arabshahi S, Vodopiyanov I B, Liu N, Rassoul H K 2014 J. Geophy. Res. Space Phys. 119 7794

    [4]

    Alexeenko V V, Chernyaev A B, Chudakov A E, Khaerdinov N S, Ozrokov S K, Sborshikov V G 1985 Proceedings of the 19th International Cosmic Ray Conference La Jolla, USA, August 11-23, 1985 p352

    [5]

    Vernetto S 2001 Proceedings of the 27th International Cosmic Ray Conference Hamburg, Germany, August 7-15, 2001 p4165

    [6]

    Tsuchiya H, Enoto T, Torii T, Nakazawa K, Yuasa T, Torii S, Fukuyama T, Yamaguchi T, Kato H, Okano M, Takita M, Makishima K 2009 Phys. Rev. Lett. 102 255003

    [7]

    Chilingarian A, Daryan A, Arakelyan K, Hovhannisyan A, Mailyan B, Melkumyan L, Hovsepyan G, Chilingaryan S, Reymers A, Vanyan L 2010 Phys. R. D 82 043009

    [8]

    Chilingarian A, Hovsepyan G, Hovhannisyan A 2011 Phys. R. D 83 062001

    [9]

    Wang J F, Qie X S, Lu H, Zhang J L, Yu X X, Shi F 2012 Acta Phys. Sin. 61 159202 (in Chinese) [王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰 2012 物理学报 61 159202]

    [10]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299

    [11]

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501 (in Chinese) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501

    [12]

    Zhou X M ,Ye N, Zhu F R, Jia H Y 2011 Proceedings of the 32th International Cosmic Ray Conferenc Beijing, China, August 11-18, 2011 p287

    [13]

    Bielajew A F 1988 Electron Transport in \bm E and \bm B Fields, in Monte Carlo Transport of Electrons and Photons (New York: Plenum Press) pp421-434

    [14]

    Dwyer J R, Uman M A 2014 Physics Reports 534 147

    [15]

    Schellart P, Trinh T N G, Buitink S 2015 Phys. Rev. Lett. 114 165001

    [16]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201 (in Chinese) [刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201]

    [17]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804

    [18]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M, Krehbiel P R, Hamlin T, Thomas R J, Rison W 2005 Geophys. Res. Lett. 32 L03813

    [19]

    Xu B, He H, Yang X Y, Bie Y G, Lü Q H 2012 Acta Phys. Sin. 61 175203 (in Chinese) [徐斌, 贺华, 杨晓艳, 别业广, 吕清花 2012 物理学报 61 175203]

    [20]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [21]

    Symbalisty E M D, Roussel-Dupre R, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575

    [22]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1

    [23]

    Bethe H A 1930 Annalen der Physik 397 325

  • [1] 阿西克古, 周勋秀, 张云峰. 雷暴电场对LHAASO观测面宇宙线次级光子的影响. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240341
    [2] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [3] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [4] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [6] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [7] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [8] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证. 物理学报, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [9] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [10] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [11] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究. 物理学报, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [12] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [13] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟. 物理学报, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [14] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟. 物理学报, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [15] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [16] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟. 物理学报, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [18] 高国良, 钱昌吉, 李 洪, 黄晓虹, 谷温静, 叶高翔. 含杂质无格点基底表面分枝状凝聚体的计算机模拟. 物理学报, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [19] 吴锋民, 施建青, 吴自勤. 高温下金属薄膜生长初期的模拟研究. 物理学报, 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  5628
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2015-04-24
  • 刊出日期:  2015-07-05

/

返回文章
返回