搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化非晶硅薄膜晶体管的低频噪声特性

刘远 何红宇 陈荣盛 李斌 恩云飞 陈义强

引用本文:
Citation:

氢化非晶硅薄膜晶体管的低频噪声特性

刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强

Low-frequency noise in hydrogenated amorphous silicon thin film transistor

Liu Yuan, He Hong-Yu, Chen Rong-Sheng, Li Bin, En Yun-Fei, Chen Yi-Qiang
PDF
导出引用
  • 针对氢化非晶硅薄膜晶体管(hydrogenated amorphous silicon thin film transistor,a-Si:H TFT)的低频噪声特性展开实验研究.由测量结果可知,a-Si:H TFT的低频噪声特性遵循1/fγ(f为频率,γ ≈ 0.92)的变化规律,主要受迁移率随机涨落效应的影响.基于与迁移率涨落相关的载流子数随机涨落模型(ΔN-Δμ模型),在考虑源漏接触电阻、局域态俘获及释放载流子效应等情况时,对器件低频噪声特性随沟道电流的变化进行分析与拟合.基于a-Si:H TFT的亚阈区电流-电压特性提取器件表面能带弯曲量与栅源电压之间的关系,通过沟道电流噪声功率谱密度提取a-Si:H TFT有源层内局域态密度及其分布.实验结果表明:局域态在禁带内随能量呈e指数变化,两种缺陷态在导带底密度分别约为6.31×1018和1.26×1018 cm-3·eV-1,特征温度分别约为192和290 K,这符合非晶硅层内带尾态密度及其分布特征.最后提取器件的平均Hooge因子,为评价非晶硅材料及其稳定性提供参考.
    Low-frequency noise in the hydrogenated amorphous silicon thin film transistor is investigated in this paper. The drain current noise spectral density shows a 1/fγ (γ ≈ 0.92, f represents frequency) behavior which ascribes to fluctuations of the interfacial trapped charges due to the dynamic trapping and de-trapping of free carriers into slow oxide traps and localized traps. The normalized noise has the power law dependence on overdrive voltage, and the power law coefficient is about -1 which illustrates that the flicker noise is dominated by mobility fluctuation mechanism. By considering the contact resistance, and emission and trapping processes of carriers between localized states in the Si/SiNx interface, the variation of low frequency noise with drain current is analyzed and fitted by use of the theory of carrier number fluctuation with correlated mobility fluctuation (ΔN-Δμ model). Furthermore, the relationship between surface band-bending and gate voltage is extracted based on subthreshold current-voltage characteristics, and thus the density of localized states is then extracted through the measurement of drain current noise power spectral density. The experimental results show an exponential localized state distribution in the band-gap while densities of two defect modes at the bottom of conduction band NT1 and NT2 are about 6.31×1018 and 1.26×1018 cm-3·eV-1, and corresponding characteristic temperatures TT1 and TT2 are about 192 and 290 K, which is similar to the reported distribution of tail states in the amorphous silicon layer. Finally, the average Hooge's parameter is extracted to estimate the quality of devices and materials.
      通信作者: 陈荣盛, Chenrs@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574048)、广东省科技重大专项(批准号:2015B090912002)和广州市珠江科技新星专项(批准号:201710010172)资助的课题.
      Corresponding author: Chen Rong-Sheng, Chenrs@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574048), the Science and Technology Research Project of Guangdong, China (Grant No. 2015B090912002), and the Pearl River S&T Nova Program of Guangzhou, China (Grant No. 201710010172).
    [1]

    Nathan A, Kumar A, Sakariya K, Servati P, Sambandan S, Striakhilev D 2004 IEEE J. Solid-State Circ. 39 1477

    [2]

    Hu Z J, Wang L L, Liao C W, Zeng L M, Lee C Y, Lien A, Zhang S D 2015 IEEE Trans. Electron Dev. 62 4037

    [3]

    Deane S, Wehrspohn R B, Powell M J 1998 Phys. Rev. B 58 12625

    [4]

    He H Y, He J, Deng W L, Wang H, Liu Y, Zheng X R 2014 IEEE Trans. Electron Dev. 61 3744

    [5]

    Liu Y, Yao R H, Li B, Deng W L 2008 J. Disp. Technol. 4 180

    [6]

    Rhayem J, Valenza M, Rigaud D, Szydlo N, Lebrun H 1998 J. Appl. Phys. 83 3660

    [7]

    Rigaud D, Valenza M, Rhayem J 2002 IET Proc. Circuits Devices Syst. 149 75

    [8]

    Hatzopoulos A T, Arpatzanis N, Tassis H, Dimitriadis C A, Templier F, Oudwan M, Kamarinos G 2007 Solid-State Electron. 51 726

    [9]

    Tai Y H, Chang C Y, Hsieh C L, Yang Y H, Chao W K, Chen H E 2014 IEEE Electron Dev. Lett. 35 229

    [10]

    Jung K D, Kim Y C, Park B G, Shin H, Lee J D 2009 IEEE Trans. Electron Dev. 56 431

    [11]

    Chen C Y, Kanicki J 1998 Solid-State Electron. 42 705

    [12]

    Xu Y, Minari T, Tsukagoshi K, Gwoziecki R, Coppard R, Balestra F, Chroboczek J A, Ghibaudo G 2010 Appl. Phys. Lett. 97 033503

    [13]

    Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512

    [14]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 物理学报 64 137101]

    [15]

    Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Dev. Lett. 34 57

    [16]

    Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Dev. Lett. 34 1521

    [17]

    Servati P, Nathan A 2002 IEEE Trans. Electron Dev. 49 812

    [18]

    Wang J, Liu Y, Liu Y R, Wu W J, Luo X Y, Liu K, Li B, En Y F 2016 Acta Phys. Sin. 65 128501 (in Chinese)[王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞 2016 物理学报 65 128501]

    [19]

    Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Dev. 36 1773

    [20]

    Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos G 1999 J. Appl. Phys. 85 3934

    [21]

    Hooge F N 1994 IEEE Trans. Electron Dev. 41 1926

    [22]

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese)[刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 物理学报 63 098503]

    [23]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518

    [24]

    Ghibaudo G, Roux Q, Dguyen-Dug C H, Balestra F, Brini J 1991 Phys. Stat. Sol. 124 571

    [25]

    Choi H S, Jeon S, Kim H, Shin J, Kim C, Chung U I 2011 IEEE Trans. Electron Dev. 32 1083

    [26]

    Dimitriadis C A, Farmakis F A, Kamarinos G, Brini J 2002 J. Appl. Phys. 91 9919

    [27]

    Ghibaudo G, Boutchacha T 2002 Microelectron. Relia. 42 573

    [28]

    Vandamme L K J 1994 IEEE Trans. Electron Dev. 41 2176

    [29]

    Delker C J, Zi Y L, Yang C, Jane D B 2013 IEEE Trans. Electron Dev. 60 2900

    [30]

    He H Y, Zheng X R, Zhang S D 2015 IEEE Electron. Dev. Lett. 36 1056

    [31]

    Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367

    [32]

    Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506

    [33]

    Vandamme L K J, Hooge F N 2008 IEEE Trans. Electron Dev. 55 3070

    [34]

    Mercha A, Pichon L, Carin R, Mourgues K, Bonnaud O 2001 Thin Solid Films 383 303

    [35]

    Vandamme L K J, Feyaerts R, Trefan G, Detcheverry C 2002 J. Appl. Phys. 91 719

  • [1]

    Nathan A, Kumar A, Sakariya K, Servati P, Sambandan S, Striakhilev D 2004 IEEE J. Solid-State Circ. 39 1477

    [2]

    Hu Z J, Wang L L, Liao C W, Zeng L M, Lee C Y, Lien A, Zhang S D 2015 IEEE Trans. Electron Dev. 62 4037

    [3]

    Deane S, Wehrspohn R B, Powell M J 1998 Phys. Rev. B 58 12625

    [4]

    He H Y, He J, Deng W L, Wang H, Liu Y, Zheng X R 2014 IEEE Trans. Electron Dev. 61 3744

    [5]

    Liu Y, Yao R H, Li B, Deng W L 2008 J. Disp. Technol. 4 180

    [6]

    Rhayem J, Valenza M, Rigaud D, Szydlo N, Lebrun H 1998 J. Appl. Phys. 83 3660

    [7]

    Rigaud D, Valenza M, Rhayem J 2002 IET Proc. Circuits Devices Syst. 149 75

    [8]

    Hatzopoulos A T, Arpatzanis N, Tassis H, Dimitriadis C A, Templier F, Oudwan M, Kamarinos G 2007 Solid-State Electron. 51 726

    [9]

    Tai Y H, Chang C Y, Hsieh C L, Yang Y H, Chao W K, Chen H E 2014 IEEE Electron Dev. Lett. 35 229

    [10]

    Jung K D, Kim Y C, Park B G, Shin H, Lee J D 2009 IEEE Trans. Electron Dev. 56 431

    [11]

    Chen C Y, Kanicki J 1998 Solid-State Electron. 42 705

    [12]

    Xu Y, Minari T, Tsukagoshi K, Gwoziecki R, Coppard R, Balestra F, Chroboczek J A, Ghibaudo G 2010 Appl. Phys. Lett. 97 033503

    [13]

    Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512

    [14]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 物理学报 64 137101]

    [15]

    Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Dev. Lett. 34 57

    [16]

    Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Dev. Lett. 34 1521

    [17]

    Servati P, Nathan A 2002 IEEE Trans. Electron Dev. 49 812

    [18]

    Wang J, Liu Y, Liu Y R, Wu W J, Luo X Y, Liu K, Li B, En Y F 2016 Acta Phys. Sin. 65 128501 (in Chinese)[王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞 2016 物理学报 65 128501]

    [19]

    Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Dev. 36 1773

    [20]

    Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos G 1999 J. Appl. Phys. 85 3934

    [21]

    Hooge F N 1994 IEEE Trans. Electron Dev. 41 1926

    [22]

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese)[刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 物理学报 63 098503]

    [23]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518

    [24]

    Ghibaudo G, Roux Q, Dguyen-Dug C H, Balestra F, Brini J 1991 Phys. Stat. Sol. 124 571

    [25]

    Choi H S, Jeon S, Kim H, Shin J, Kim C, Chung U I 2011 IEEE Trans. Electron Dev. 32 1083

    [26]

    Dimitriadis C A, Farmakis F A, Kamarinos G, Brini J 2002 J. Appl. Phys. 91 9919

    [27]

    Ghibaudo G, Boutchacha T 2002 Microelectron. Relia. 42 573

    [28]

    Vandamme L K J 1994 IEEE Trans. Electron Dev. 41 2176

    [29]

    Delker C J, Zi Y L, Yang C, Jane D B 2013 IEEE Trans. Electron Dev. 60 2900

    [30]

    He H Y, Zheng X R, Zhang S D 2015 IEEE Electron. Dev. Lett. 36 1056

    [31]

    Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367

    [32]

    Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506

    [33]

    Vandamme L K J, Hooge F N 2008 IEEE Trans. Electron Dev. 55 3070

    [34]

    Mercha A, Pichon L, Carin R, Mourgues K, Bonnaud O 2001 Thin Solid Films 383 303

    [35]

    Vandamme L K J, Feyaerts R, Trefan G, Detcheverry C 2002 J. Appl. Phys. 91 719

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [3] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [4] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [5] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [6] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [7] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性. 物理学报, 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [8] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [9] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [10] 徐飘荣, 强蕾, 姚若河. 一个非晶InGaZnO薄膜晶体管线性区陷阱态的提取方法. 物理学报, 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [11] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [12] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [13] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华. 低温透明非晶IGZO薄膜晶体管的光照稳定性. 物理学报, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [14] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [15] 康昆勇, 邓书康, 申兰先, 孙启利, 郝瑞亭, 化麒麟, 唐润生, 杨培志, 李明. 退火对Ge诱导晶化多晶Si薄膜结晶特性的影响. 物理学报, 2012, 61(19): 198101. doi: 10.7498/aps.61.198101
    [16] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [17] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [18] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [20] 张世斌, 廖显伯, 安龙, 杨富华, 孔光临, 王永谦, 徐艳月, 陈长勇, 刁宏伟. 非晶微晶过渡区域硅薄膜的微区喇曼散射研究. 物理学报, 2002, 51(8): 1811-1815. doi: 10.7498/aps.51.1811
计量
  • 文章访问数:  6392
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-08-25
  • 刊出日期:  2017-12-05

/

返回文章
返回