搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴枪脉冲放电等离子体输运过程中密度变化的实验研究

杨亮 张俊龙 闫慧杰 滑跃 任春生

引用本文:
Citation:

同轴枪脉冲放电等离子体输运过程中密度变化的实验研究

杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生

Experimental study on coaxial gun pulse discharge plasma density change in transport process

Yang Liang, Zhang Jun-Long, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng
PDF
导出引用
  • 同轴枪放电等离子体具有密度高、输运速度快等特点,在核物理、航天工程等领域具有广阔的应用前景,已成为国际前沿研究热点.同轴枪中的等离子体密度是反映其应用特性的重要参数之一,因此等离子体密度在输运过程中的变化对理论研究和实际应用都具有重要意义.利用发射光谱法测量了H谱线的Stark展宽,从而计算出同轴枪放电等离子体密度在输运过程中的变化.结果显示,当电源注入能量为1.08 kJ、同轴枪内空气气压为4.0 Pa时,等离子体密度在输运过程中不断增加;相同能量注入条件下,当同轴枪内空气气压增加至10 Pa时,等离子体密度在输运过程中出现了先增加后减小的趋势;当电源的注入能量达到7.68 kJ时,等离子体密度在10 Pa气压条件下输运时也出现了一直增加的现象.此外,当同轴枪内的工作气体变为氩气时,在注入能量为1.08 kJ、枪内气压4.0 Pa条件下,等离子体密度在输运过程中一直减小.
    Coaxial gun discharge plasma with high density and velocity has a number of potential applications in fusion energy, plasma refueling, disruption mitigation in tokamaks, plasma space propulsion, acceleration of dust particles to hypervelocity etc., and thus has become an important research topic in fields of nuclear physics and aerospace engineering. In this paper, we report the experimental investigation on electrical and transport characteristics of coaxial gun discharge plasma. Based on electrical and optical diagnoses, the discharge voltage, discharge current and axial velocity of plasma transport are measured. Meanwhile, the emission spectrum technology is employed to measure the Stark broadening of H spectral line and then plasma density is calculated. The experimental results show that the discharges in the coaxial gun present a feature of multiple discharges and blow-by instability phenomena are observed by photomultiplier acquired signals. In addition, the plasma velocity and density in the transport process are not constant. It is found that the axial plasma velocity in the transport process decreases due to mass gain caused by the snowplow model and the change tendency of plasma density in the transport process is dependent on various settings. A systematic study has been carried out for exploring plasma density change in transport process, and different experimental parameters are adopted in order to further analyze the physical mechanism of plasma density change in transport process. When the air pressure in the coaxial gun is changed from 4.0 Pa to 10 Pa, for 1.08 kJ applied power energy, an obvious difference appears in transport properties of plasma density, i.e., plasma density increases gradually in 4.0 Pa air while it increases first and then decreases in 10 Pa air. However, the plasma density increases continually in air pressure of 10 Pa when the power energy is increased to 7.68 kJ. Moreover, when the working gas is replaced with argon and discharge setting is 4.0 Pa pressure and 1.08 kJ applied power energy, the plasma density decreases continually in the transport process. The distinct behaviors, as analyzed, are mainly caused by plasma energy transformation difference in the transport process. As it is known, the plasma movement at high velocity in coaxial guns can ionize neutral particles and consume its energy, which results in the increasing plasma density and the decreasing electron and ion temperatures in the transport process. Then, a maximum density is present in the transport process when the electron and ion temperatures are lower than that at which gas ionization occurs. The axial location of maximum density changes with applied power energy, working gas pressure and species, which means that plasma energy transformation and density change properties in transport process strongly rely on different external parameters. The study provides some insight into how to better apply the coaxial gun discharge plasma to practical engineering field.
      通信作者: 任春生, rchsh@dlut.edu.cn
      Corresponding author: Ren Chun-Sheng, rchsh@dlut.edu.cn
    [1]

    Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S 2008Phys.Plasmas 15 103701

    [2]

    Turchi P J, Roderick N F, Degnan J H, Frese M H, Amdahl D J 2008IEEE Tran.Plasma Sci. 36 92

    [3]

    Gao Z X, Feng C H, Yang X Z, Huang J G 2012Acta Phys.Sin. 61 145201(in Chinese)[高著秀, 冯春华, 杨宣宗, 黄建国2012物理学报61 145201]

    [4]

    Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S, Dorf L A, Shukla P K 2008Phys.Rev.Lett. 100 155002

    [5]

    Asai T, Itagaki H, Numasawa H, Terashima Y, Hirano Y, Hirose A 2010Rev.Sci.Instrum. 81 10E119

    [6]

    Case A, Messer S, Brockington S, Wu L, Witherspoon F D, Elton R 2013Phys.Plasmas 20 012704

    [7]

    Case A, Messer S, Bomgardner R, Witherspoon F D 2010Phys.Plasmas 17 053503

    [8]

    Hsu S C, Merritt E C, Moser A L, Awe T J, Brockington S, Davis J S, Adams C S, Case A, Cassibry J T, Dunn J P, Gilmore M A, Messer S J, Witherspoon F D 2012Phys.Plasmas 19 123514

    [9]

    Ticos C M, Wang Z H, Wurden G A 2011IEEE Trans.Plasma Sci. 39 2088

    [10]

    Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009Phys.Plasmas 16 064502

    [11]

    Woodruff S, Hill D N, Stallard B W, Bulmer R, Cohen B, Holcomb C T, Hooper E B, McLean H S, Moller J, Wood R D 2003Phys.Rev.Lett. 90 095001

    [12]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagataet M 2010IEEE Trans.Plasma Sci. 38 232

    [13]

    Cassibry J T, Thio Y C, Markusic T E, Wu S T 2006J.Propul.Power. 22 628

    [14]

    Cassibry J T 2008IEEE Trans.Plasma Sci. 36 2180

    [15]

    Markusic T E, Thio Y C, Cassibry J T 2002Proceedings of the 38th AIAA Joint Propulsion Conference Indianapolis, Indiana, July 7-10, 2002, p1

    [16]

    McNab I R 2009IEEE Trans.Magn. 45 381

    [17]

    Voronin A V, Gusev V K, Petrov Y V, Sakharov N V, Abramova K B, Sklyarova E M, Tolstyakov S Y 2005Nucl Fusion 45 1039

    [18]

    Voronin A V, Gusev V K, Petrov Y V, Mukhin E E, Tolstyakov S Y, Kurskiev G S, Kochergin M M, Hellblom K G 2008Nukleonika 53 103

    [19]

    Ticos C M, Wang Z H, Wurden G A 2008IEEE Trans.Plasma Sci. 36 2770

    [20]

    Wang Z H, Ticos C M, Wurden G A 2007Phys.Plasmas 14 103701

    [21]

    Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010Spacecraft Environment Engineering 27 285(in Chinese)[高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华2010航天器环境工程27 285]

    [22]

    Han J W, Zhang Z L, Huang J G, Li X Y, Chen Z F, Quan R H, Li H W 2006Spacecraft Environment Engineering 23 205(in Chinese)[韩建伟, 张振龙, 黄建国, 李小银, 陈赵峰, 全荣辉, 李宏伟2006航天器环境工程23 205]

    [23]

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014High Voltage Engineering 40 13(in Chinese)[杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生2014高电压技术40 13]

    [24]

    Wiechula J, Hock C, Iberler M, Manegold T, Schnlein A, Jacoby J 2015Phys.Plasmas 22 043516

    [25]

    Wu Y, Bai S B, Wang J Y, Chen J P, Ni X W 2007Optoelectronic Technology 27 49(in Chinese)[吴莹, 白顺波, 王俊彦, 陈建平, 倪晓武2007光电子技术27 49]

    [26]

    Warner K, Hieftje G M 2002Spectrochim Acta B 57 201

    [27]

    Clements R M 1978J.Vac.Sci.Technol. 15 193

    [28]

    Yuan F Y, Lu W Q, Lin G Q 2009Chinese Journal of Vacuum Science and Technology 29 509(in Chinese)[袁方园, 陆文琪, 林国强2009真空科学与技术学报29 509]

    [29]

    Li S, Liu Z W, Chen Q, Liu F P, Wang Z D, Yang L Z 2012Spectrosc.Spectr.Anal. 32 33(in Chinese)[李森, 刘忠伟, 陈强, 刘福平, 王正铎, 杨丽珍2012光谱学与光谱分析32 33]

    [30]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010J.Appl.Phys. 107 063303

    [31]

    Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips M W, Brockington S, Elton R 2009Rev.Sci.Instrum. 80 083506

    [32]

    Hart P J 1962Phys.Fluids 5 38

    [33]

    Hart P J 1964J.Appl.Phys. 35 3425

    [34]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015Acta Phys.Sin. 64 075201(in Chinese)[张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生2015物理学报64 075201]

    [35]

    Cassibry J T, Thio Y C, Wu S T 2006Phys.Plasmas 13 053101

    [36]

    Huang J G, Han J W, Li H W, Cai M H, Li X Y, Zhang Z L, Chen Z F, Wang L, Yang X Z, Feng C H 2009Chinese Science Bulletin 54 150(in Chinese)[黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银, 张振龙, 陈赵峰, 王龙, 杨宣宗, 冯春华2009科学通报54 150]

    [37]

    Chen Z F 2006M.S.Thesis(Beijing:Center for Space Science and Applied Research, Chinese Academy of Sciences)(in Chinese)[陈赵峰2006硕士学位论文(北京:中国科学院空间科学与应用研究中心)]

    [38]

    Kubo H, Kawashima N, Itoh T 1971Plasma Physics 13 131

    [39]

    Qian M Y 2011 Ph.D.Dissertation (Dalian:Dalian University of Technology)(in Chinese)[钱沐杨2011博士学位论文(大连:大连理工大学)]

    [40]

    Wu L F 2010 M.S.Thesis (Wuhan:Wuhan Institute of Technology)(in Chinese)[吴利峰2010硕士学位论文(武汉:武汉工程大学)]

    [41]

    Raizer Y P 1991Gas Discharge Physics(Berlin:Springer-Verlag) pp58-59

    [42]

    Roy S, Singh K P, Gaitonde D V 2007Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, p1

    [43]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992Plasma Sources Sci.Technol. 1 207

    [44]

    Singh K P, Roya S 2007J.Appl.Phys. 101 123308

  • [1]

    Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S 2008Phys.Plasmas 15 103701

    [2]

    Turchi P J, Roderick N F, Degnan J H, Frese M H, Amdahl D J 2008IEEE Tran.Plasma Sci. 36 92

    [3]

    Gao Z X, Feng C H, Yang X Z, Huang J G 2012Acta Phys.Sin. 61 145201(in Chinese)[高著秀, 冯春华, 杨宣宗, 黄建国2012物理学报61 145201]

    [4]

    Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S, Dorf L A, Shukla P K 2008Phys.Rev.Lett. 100 155002

    [5]

    Asai T, Itagaki H, Numasawa H, Terashima Y, Hirano Y, Hirose A 2010Rev.Sci.Instrum. 81 10E119

    [6]

    Case A, Messer S, Brockington S, Wu L, Witherspoon F D, Elton R 2013Phys.Plasmas 20 012704

    [7]

    Case A, Messer S, Bomgardner R, Witherspoon F D 2010Phys.Plasmas 17 053503

    [8]

    Hsu S C, Merritt E C, Moser A L, Awe T J, Brockington S, Davis J S, Adams C S, Case A, Cassibry J T, Dunn J P, Gilmore M A, Messer S J, Witherspoon F D 2012Phys.Plasmas 19 123514

    [9]

    Ticos C M, Wang Z H, Wurden G A 2011IEEE Trans.Plasma Sci. 39 2088

    [10]

    Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009Phys.Plasmas 16 064502

    [11]

    Woodruff S, Hill D N, Stallard B W, Bulmer R, Cohen B, Holcomb C T, Hooper E B, McLean H S, Moller J, Wood R D 2003Phys.Rev.Lett. 90 095001

    [12]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagataet M 2010IEEE Trans.Plasma Sci. 38 232

    [13]

    Cassibry J T, Thio Y C, Markusic T E, Wu S T 2006J.Propul.Power. 22 628

    [14]

    Cassibry J T 2008IEEE Trans.Plasma Sci. 36 2180

    [15]

    Markusic T E, Thio Y C, Cassibry J T 2002Proceedings of the 38th AIAA Joint Propulsion Conference Indianapolis, Indiana, July 7-10, 2002, p1

    [16]

    McNab I R 2009IEEE Trans.Magn. 45 381

    [17]

    Voronin A V, Gusev V K, Petrov Y V, Sakharov N V, Abramova K B, Sklyarova E M, Tolstyakov S Y 2005Nucl Fusion 45 1039

    [18]

    Voronin A V, Gusev V K, Petrov Y V, Mukhin E E, Tolstyakov S Y, Kurskiev G S, Kochergin M M, Hellblom K G 2008Nukleonika 53 103

    [19]

    Ticos C M, Wang Z H, Wurden G A 2008IEEE Trans.Plasma Sci. 36 2770

    [20]

    Wang Z H, Ticos C M, Wurden G A 2007Phys.Plasmas 14 103701

    [21]

    Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010Spacecraft Environment Engineering 27 285(in Chinese)[高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华2010航天器环境工程27 285]

    [22]

    Han J W, Zhang Z L, Huang J G, Li X Y, Chen Z F, Quan R H, Li H W 2006Spacecraft Environment Engineering 23 205(in Chinese)[韩建伟, 张振龙, 黄建国, 李小银, 陈赵峰, 全荣辉, 李宏伟2006航天器环境工程23 205]

    [23]

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014High Voltage Engineering 40 13(in Chinese)[杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生2014高电压技术40 13]

    [24]

    Wiechula J, Hock C, Iberler M, Manegold T, Schnlein A, Jacoby J 2015Phys.Plasmas 22 043516

    [25]

    Wu Y, Bai S B, Wang J Y, Chen J P, Ni X W 2007Optoelectronic Technology 27 49(in Chinese)[吴莹, 白顺波, 王俊彦, 陈建平, 倪晓武2007光电子技术27 49]

    [26]

    Warner K, Hieftje G M 2002Spectrochim Acta B 57 201

    [27]

    Clements R M 1978J.Vac.Sci.Technol. 15 193

    [28]

    Yuan F Y, Lu W Q, Lin G Q 2009Chinese Journal of Vacuum Science and Technology 29 509(in Chinese)[袁方园, 陆文琪, 林国强2009真空科学与技术学报29 509]

    [29]

    Li S, Liu Z W, Chen Q, Liu F P, Wang Z D, Yang L Z 2012Spectrosc.Spectr.Anal. 32 33(in Chinese)[李森, 刘忠伟, 陈强, 刘福平, 王正铎, 杨丽珍2012光谱学与光谱分析32 33]

    [30]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010J.Appl.Phys. 107 063303

    [31]

    Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips M W, Brockington S, Elton R 2009Rev.Sci.Instrum. 80 083506

    [32]

    Hart P J 1962Phys.Fluids 5 38

    [33]

    Hart P J 1964J.Appl.Phys. 35 3425

    [34]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015Acta Phys.Sin. 64 075201(in Chinese)[张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生2015物理学报64 075201]

    [35]

    Cassibry J T, Thio Y C, Wu S T 2006Phys.Plasmas 13 053101

    [36]

    Huang J G, Han J W, Li H W, Cai M H, Li X Y, Zhang Z L, Chen Z F, Wang L, Yang X Z, Feng C H 2009Chinese Science Bulletin 54 150(in Chinese)[黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银, 张振龙, 陈赵峰, 王龙, 杨宣宗, 冯春华2009科学通报54 150]

    [37]

    Chen Z F 2006M.S.Thesis(Beijing:Center for Space Science and Applied Research, Chinese Academy of Sciences)(in Chinese)[陈赵峰2006硕士学位论文(北京:中国科学院空间科学与应用研究中心)]

    [38]

    Kubo H, Kawashima N, Itoh T 1971Plasma Physics 13 131

    [39]

    Qian M Y 2011 Ph.D.Dissertation (Dalian:Dalian University of Technology)(in Chinese)[钱沐杨2011博士学位论文(大连:大连理工大学)]

    [40]

    Wu L F 2010 M.S.Thesis (Wuhan:Wuhan Institute of Technology)(in Chinese)[吴利峰2010硕士学位论文(武汉:武汉工程大学)]

    [41]

    Raizer Y P 1991Gas Discharge Physics(Berlin:Springer-Verlag) pp58-59

    [42]

    Roy S, Singh K P, Gaitonde D V 2007Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, p1

    [43]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992Plasma Sources Sci.Technol. 1 207

    [44]

    Singh K P, Roya S 2007J.Appl.Phys. 101 123308

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [4] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [5] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响. 物理学报, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [7] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [8] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究. 物理学报, 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [9] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [10] 栾伯晗, 乔增熙, 刘鹏, 赵伟, 鄂鹏, 于达仁. 氢氩等离子体中H原子Balmer 谱线超常展宽研究. 物理学报, 2012, 61(1): 015202. doi: 10.7498/aps.61.015202
    [11] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [12] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [13] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [14] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [15] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [16] 王 亮, 曹金祥, 王 艳, 牛田野, 王 舸, 朱 颖. 电磁脉冲在实验室等离子体中传播时间的实验研究. 物理学报, 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [17] 晋兴雨, 邱锡钧, 朱志远. 在相对论性激光-等离子体系统中初始物理参数对激光脉冲的影响. 物理学报, 2006, 55(10): 5338-5343. doi: 10.7498/aps.55.5338
    [18] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响. 物理学报, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [19] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度. 物理学报, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [20] 佘永柏, 陈韵芳, 赵汝文, 张秀兰, 潘广炎. Al激光等离子体的谱线展宽及线形研究. 物理学报, 1985, 34(1): 10-16. doi: 10.7498/aps.34.10
计量
  • 文章访问数:  6179
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-27
  • 修回日期:  2016-12-07
  • 刊出日期:  2017-03-05

/

返回文章
返回