搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响

陈忠琪 钟安 戴栋 宁文军

引用本文:
Citation:

屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响

陈忠琪, 钟安, 戴栋, 宁文军

Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet

Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun
PDF
HTML
导出引用
  • 在大气压等离子体射流应用中, 环境气体对射流流出物的影响不可忽视, 尤其是在某些对环境粒子高度敏感的特定场景中. 同轴双管式射流装置可用于抑制射流流出物与环境气体之间的相互扩散, 从而控制射流流出物的化学性质. 本文对同轴双管式氦气大气压等离子体射流在不同屏蔽气体流速下的放电特性和化学性质进行了数值仿真研究, 并通过实验光学图像对仿真模型加以验证. 结果表明, 相比于没有屏蔽气体的情况, 在高流速条件下放电得到增强, 而在低流速下放电较弱; 随着流速的增加, 空间中的粒子数均随之增加, 这可以归因于由屏蔽气体流速增加而产生的更宽的主放电通道. 此外, 不同浓度轮廓线上的离子径向通量受到流速的影响也存在很大差异. 本研究进一步揭示了不同的放电位置对氮氧粒子产生的影响, 加深了关于屏蔽气体流速影响等离子体射流放电行为的认识, 并可能为等离子体射流的进一步应用开辟新的机会.
    In the application of atmospheric pressure plasma jet, the influence of ambient gas cannot be ignored, especially in some specific scenarios which are highly sensitive to ambient particles. Coaxial double-tube plasma jet device is a promising method of controlling the chemical properties of jet effluent by restraining the mutual diffusion between jet effluent and ambient gas. In this work, the discharge characteristics and chemical properties of coaxial double-tube helium atmospheric pressure plasma jet at different flow rates of shielding gas are studied numerically, and the model is validated by experimental optical images. The results illustrate the enhanced discharge at the high flow rate, the weaker discharge at the low flow rate, and discharge behaviors without shielding gas as well. With the increase of shielded gas flow rate, the particle density increases in the discharge space, which can be attributed to the wider main discharge channel caused by the increase of shielding gas flow rate. In addition, the analysis shows the great difference in ion fluxes affected by the flow rate of the SG between the contour lines of different helium mole fractions. This study further reveals that different discharge positions have a great influence on the generation of nitrogen and oxygen particles, thus deepening the understanding of influence of shielding gas flow rate on discharge behavior, and may open up new opportunities for the further application of plasma jet.
      通信作者: 戴栋, ddai@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51877086)资助的课题.
      Corresponding author: Dai Dong, ddai@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877086).
    [1]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [2]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [3]

    李寿哲, 谢士辉, 吴悦, 廖宏达 2021 高电压技术 47 3012Google Scholar

    Li S Z, Xie S H, Wu Y, Liao H D 2021 High Voltage Eng. 47 3012Google Scholar

    [4]

    Winter J, Brandenburg R, Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001Google Scholar

    [5]

    易善婷, 刘峰, 方志 2019 高电压技术 45 1936Google Scholar

    Yi S T, Liu F, Fang Z 2019 High Voltage Eng. 45 1936Google Scholar

    [6]

    Lu X, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [7]

    Cai Y K, Lv L, Lu X P 2021 High Voltage 6 1092Google Scholar

    [8]

    潘如政, 臧子豪, 黄邦斗, 朱文超, 章程, 邵涛 2021 高电压技术 47 3696Google Scholar

    Pan R Z, Zang Z H, Huang B D, Zhu W C, Zhang C, Shao T 2021 High Voltage Eng. 47 3696Google Scholar

    [9]

    Neyts E C, Ostrikov K K, Sunkara M K, Bogaerts A 2015 Chem. Rev. 115 13408Google Scholar

    [10]

    Wu S L, Yang Q, Shao T, Zhang Z T, Huang L Y 2020 High Voltage 5 15Google Scholar

    [11]

    Cheng H, Liu X, Lu X P, Liu D W 2016 High Voltage 1 62Google Scholar

    [12]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 物理学报 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [13]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [14]

    Penkov O V, Khadem M, Lim W S, Kim D E 2015 J. Coat. Technol. Res. 12 225Google Scholar

    [15]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [16]

    朱彦熔, 常正实 2022 物理学报 71 025202Google Scholar

    Zhu Y R, Chang Z S 2022 Acta Phys. Sin. 71 025202Google Scholar

    [17]

    王瑞雪, 沈苑, 章程, 牛铮, 方志, 邵涛 2015 高电压技术 41 2903Google Scholar

    Wang R X, Shen Y, Zhang C, Niu Z, Fang Z, Shao T 2015 High Voltage Eng. 41 2903Google Scholar

    [18]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

    [19]

    Léveillé V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467Google Scholar

    [20]

    Reuter S, Winter J, Schmidt-Bleker A, Tresp H, Hammer M U, Weltmann K-D 2012 IEEE Trans. Plasma Sci. 40 2788Google Scholar

    [21]

    Ohashi H, Oyama K, Mitani T, Naiki K, Nakayama T, Ito H 2017 IEEE Trans. Plasma Sci. 45 2481Google Scholar

    [22]

    Winter J, Sousa J S, Sadeghi N, Schmidt-Bleker A, Reuter S, Puech V 2015 Plasma Sources Sci. Technol. 24 025015Google Scholar

    [23]

    Nguyen D B, Trinh Q H, Mok Y S, Lee W G 2020 Plasma Sources Sci. Technol. 29 035014Google Scholar

    [24]

    Karakas E, Koklu M, Laroussi M 2010 J. Phys. D:Appl. Phys. 43 155202Google Scholar

    [25]

    赵莉华, 冀一玮, 尚豪, 黄小龙, 任俊文, 宁文军 2021 中国电机工程学报 41 6090Google Scholar

    Zhao L H, Ji Y W, Shang H, Huang X L, Ren J W, Ning W J 2021 Proc. CSEE 41 6090Google Scholar

    [26]

    Yan W, Economou D J 2017 J. Phys. D:Appl. Phys. 50 415205Google Scholar

    [27]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [28]

    Breden D, Miki K, Raja L L 2012 Plasma Sources Sci. Technol. 21 034011Google Scholar

    [29]

    Lazarou C, Anastassiou C, Topala I, Chiper A S, Mihaila I, Pohoata V, Georghiou G E 2018 Plasma Sources Sci. Technol. 27 105007Google Scholar

    [30]

    Lin P, Zhang J, Nguyen T, Donnelly V M, Economou D J 2021 J. Phys. D:Appl. Phys. 54 075205Google Scholar

    [31]

    Liu X Y, Pei X K, Lu X P, Liu D W 2014 Plasma Sources Sci. Technol. 23 035007Google Scholar

    [32]

    Kettlitz M, Höft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [33]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D:Appl. Phys. 50 345201Google Scholar

    [34]

    Zhang Y H, Ning W J, Dai D 2018 AIP Adv. 8 035008Google Scholar

    [35]

    Pinchuk M, Stepanova O, Kurakina N, Spodobin V 2017 J. Phys. Conf. Ser. 830 012060Google Scholar

    [36]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [37]

    Basher A H, Mohamed A-A H 2018 J. Appl. Phys. 123 193302Google Scholar

    [38]

    Xiong R H, Xiong Q, Nikiforov A Y, Vanraes P, Leys C 2012 J. Appl. Phys. 112 033305Google Scholar

    [39]

    Viegas P, Slikboer E, Obrusník A, Bonaventura Z, Sobota A, Garcia-Caurel E, Guaitella O, Bourdon A 2018 Plasma Sources Sci. Technol. 27 094002Google Scholar

    [40]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [41]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [42]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [43]

    Murakami T, Niemi K, Gans T, O'Connell D, Graham W G 2012 Plasma Sources Sci. Technol. 22 015003Google Scholar

    [44]

    Kossyi A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of experimental setup.

    图 2  仿真模型的几何结构

    Fig. 2.  The geometry of the simulation model.

    图 3  不同SG流速下的放电光学图像 (a), (c) 0 slm; (b) 1 slm; (d) 3 slm. 红色曲线表示放电时最明亮的区域

    Fig. 3.  The discharge optical images for the different SG flow rates: (a), (c) 0 slm; (b) 1 slm; (d) 3 slm. The red curve shows the brightest region of the discharge.

    图 4  (a), (c) 不同SG流速下98%氦气摩尔分数的轮廓线; (b) 氦气摩尔分数(cHe)在轴向位置z = 2.5 mm处的径向分布

    Fig. 4.  (a), (c) The contour line of the 98% helium mole fraction at different flow rates of SG; (b) the distribution of the helium mole fraction(cHe) at axial position of z = 2.5 mm.

    图 5  当SG流速处于(a) 0, (b) 1, (c) 2和(d) 3 slm情况下, 电子密度ne(单位: m–3, 以对数形式表示)的时空分布. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线

    Fig. 5.  Spatial and temporal profiles of the electron density ne (unit: m–3, in 10 logarithmic scale) for SG flow rates of (a) 0, (b) 1, (c) 2 and (d) 3 slm. The magenta lines are the contour lines of different helium mole fractions.

    图 6  SG流速为(a) 0 和(b) 3 slm情况下放电空间中电离率(单位: mol·m–3·s–1, 以对数形式表示)的时空演化情况. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线

    Fig. 6.  Development of the ionization rate (unit: mol·m–3·s–1, in 10 logarithmic scale) in the discharge region for SG flow rate of (a) 0 and (b) 3 slm. The magenta lines are the contour lines of different helium mole fractions.

    图 7  放电空间中(a)粒子平均数密度及(b)各粒子时间空间平均生成速率

    Fig. 7.  (a) The average species density and (b) the average spatiotemporal production rate of the species in discharge region.

    图 8  轴向位置z = 2.5 mm, He*粒子的生成速率沿径向分布

    Fig. 8.  Radial distribution of the production rate of He* at axial position z = 2.5 mm.

    图 9  不同氦气浓度轮廓线表面的离子径向通量

    Fig. 9.  Radial flux of ions on the contour lines of different helium mole fractions.

    图 10  不同氦气浓度轮廓线表面的化学反应速率

    Fig. 10.  Reaction rate on the contour lines of different helium mole fractions.

    图 11  当SG流速为(a) 0和(b) 3 slm时, 轴向位置z = 2.5 mm处的离子密度沿径向位置分布

    Fig. 11.  Distribution of ion density at axial position z = 2.5 mm for SG flow rate of (a) 0 and (b) 3 slm.

    图 12  不同氦气浓度轮廓线表面的径向电场变化情况

    Fig. 12.  Variation of the radial electric field on the contour lines of different helium mole fractions.

    图 13  $\rm N_2^+ $$\rm O_2^+ $的化学反应速率的空间分布. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线

    Fig. 13.  Spatial distribution of the reaction rates involving (a) $\rm O_2^+ $ and (b) $\rm N_2^+ $. The magenta lines are the contour lines of different helium mole fractions.

    表 1  中性气体流动模型的边界条件

    Table 1.  Boundary conditions of the neutral gas flow model.

    边界表达式备注
    AX对称轴
    BCui = 3 slm, c = 1工作气体入口
    DEuo, c = 0屏蔽气体入口
    FGu = 0.1 m/s, c = 0环境空气入口
    GWp = 1 atm, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$
    BPO, CQRD,
    UW, ESTF
    u = 0 m/s, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$
    下载: 导出CSV

    表 2  等离子体动力学模型的边界条件

    Table 2.  Boundary conditions of the plasma dynamics model.

    边界表达式备注
    IPOV = V0, 方程(9)—方程(12)外施电压
    HX对称轴
    IJ, KL$- {\boldsymbol{n}} \cdot {\boldsymbol{D}} = 0$, $- {\boldsymbol{n} } \cdot {\boldsymbol{\varGamma} } {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$
    TVV = 0, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$接地
    TM, XYVV = 0接地
    UV, LST, JQRK方程(9)—方程(12), 方程(14), 方程(15)
    下载: 导出CSV

    表 A  等离子体化学反应

    Table A.  Chemical reactions considered in the plasma dynamics model.

    序号反应方程式速率常数能量损耗
    /eV
    参考
    文献
    1${\rm{e+He\to e+He}}$f(c, ε) (m3·s–1)/[40]
    2${\rm{e+He\to e+He^{\ast}}}$f(c, ε) (m3·s–1)19.82[40]
    3${\rm{e+He^{\ast }\to e+He}} $f(c, ε) (m3·s–1)–19.82[40]
    4${\rm{e+He\to 2e+He^{+}}} $f(c, ε) (m3·s–1)24.587[40]
    5${\rm{e+N_{2}\to e+N_{2}}} $f(c, ε) (m3·s–1)/[40]
    6${\rm{e+N_{2}\to e+N_{2}(VIB\, \textit{v}1)}}$f(c, ε) (m3·s–1)0.2889[40]
    7${\rm{e+N_{2}\to e+N_{2}(VIB\, 3\textit{v}1)} }$f(c, ε) (m3·s–1)0.8559[40]
    8${\rm{e+N_{2}\to e+N_{2}(VIB\, 4\textit{v}1)} }$f(c, ε) (m3·s–1)1.1342[40]
    9${\rm{e+N_{2}\to e+N_{2}(VIB \,5\textit{v}1)} }$f(c, ε) (m3·s–1)1.4088[40]
    10${\rm{e+N_{2}\to 2e+N_{2}^{+}}} $f(c, ε) (m3·s–1)15.6[40]
    11${\rm{e+O_{2}\to e+O_{2}}} $f(c, ε) (m3·s–1)/[40]
    12${\rm{e+O_{2}\to O+O^{-}}} $f(c, ε) (m3·s–1)/[40]
    13${\rm{e+O_{2}\to O_{2}^{-}}} $f(c, ε) (m3·s–1)/[40]
    14${\rm{e+O_{2}\to e+O_{2}(VIB\, 3\textit{v}1)} }$f(c, ε) (m3·s–1)0.57[40]
    15${\rm{e+O_{2}\to e+O_{2}(VIB\, 4\textit{v}1)} }$f(c, ε) (m3·s–1)0.75[40]
    16${\rm{e+O_{2}\to e+O_{2} } }(\rm A1)$f(c, ε) (m3·s–1)0.997[40]
    17${\rm{e+O_{2}\to e+O_{2}}} $f(c, ε) (m3·s–1)–0.997[40]
    18${\rm{e+O_{2}\to e+O_{2} } }(\rm B1)$f(c, ε) (m3·s–1)1.627[40]
    19${\rm{e+O_{2}\to e+O_{2}}} $f(c, ε) (m3·s–1)–1.627[40]
    20${\rm{e+O_{2}\to e+O_{2}(EXC)}} $f(c, ε) (m3·s–1)4.5[40]
    21${\rm{e+O_{2}\to e+O+O}} $f(c, ε) (m3·s–1)5.58[40]
    22${\rm{e+O_{2}\to e+O+O(^{1}D)}} $f(c, ε) (m3·s–1)8.4[40]
    23${\rm{e+O_{2}\to 2e+O_{2}^{+}}}$f(c, ε)(m3·s–1)12.1[40]
    24${\rm{e+He^{\ast }\to 2e+He^{+}}} $$4.661 \times {10^{ - 16} } \times {T_{\text{e} } ^{0.6}} \times { {\rm{e} }^{ - 4.78/T_{\text{e} } } }\,({\rm m}^3{\cdot} {\rm{s} }^{-1})$4.78[41]
    25${\rm{e+He_{2}^{\ast }\to 2e+He_{2}^{+}}} $$1.268 \times {10^{ - 18} } \times {T_{\text{e} }^{0.71} }\times { {\text{e} }^{ - 3.4/T_{\text{e} } } }\, ({\rm m}^3{\cdot} {\rm{s} }^{-1})$3.4[41]
    26${\rm{2He^{\ast }\to e+He+He^{+}}} $4.5 × 10–16 (m3·s–1)–15[41]
    27${\rm{e+He_{2}^{+}\to He^{\ast}+He}} $$5.386\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[41]
    28${\rm{e+He^{+}\to He^{\ast}}} $$6.76\times10^{-19}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[41]
    29${\rm{2e+He^{+}\to e+He^{\ast}}} $$6.186\times10^{-39}\times T_{\rm e}^{-4.4}\rm (m^3{\cdot} s^{-1})$/[31]
    30${\rm{e+He+He^{+}\to He+He^{\ast}}} $$6.66\times10^{-42}\times T_{\rm e}^{-2}\rm (m^6{\cdot} s^{-1})$/[31]
    31${\rm{2e+He_{2}^{+}\to He_{2}^{\ast}+e}} $1.2 × 10–33 (m6·s–1)/[31]
    32${\rm{e+He+He_{2}^{+}\to He_{2}^{\ast }+He}} $1.5 × 10–39 (m6·s–1)/[31]
    33${\rm{e+He+He_{2}^{+}\to He^{\ast }+2He}} $3.5 × 10–39 (m6·s–1)/[31]
    34${\rm{2e+He_{2}^{+}\to He^{\ast }+He+e}} $2.8 × 10–32 (m6·s–1)/[31]
    35${\rm{e+N_{2}\to e+N+N}} $$1\times10^{-16}\times T_{\rm e}^{-0.5}\times {\rm e}^{{-16}/T_{\rm{e} }}\rm (m^3{\cdot} s^{-1})$9.757[42]
    36${\rm{e+N_{2}^{+}\to N+N}} $$4.8\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[42]
    37${\rm{e+N_{2}^{+}\to N_{2}}} $$7.72\times10^{-14}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[43]
    38${\rm{e+N_{4}^{+}\to 2N_{2}}} $$3.22\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[44]
    39${\rm{2e+N_{2}^{+}\to N_{2}+e}} $$3.165\times10^{-42}\times T_{\rm e}^{-0.8}\rm (m^6 \cdot s^{-1})$/[44]
    40${\rm{e+2O_{2}\to O_{2}+O_{2}^{-}}} $$5.17\times10^{-43}\times T_{\rm e}^{-1}\rm (m^6{\cdot} s^{-1})$–0.43[44]
    41${\rm{e+O_{2}^{+}\to O+O}} $$6\times10^{-11}\times T_{\rm e}^{-1}\rm (m^3{\cdot} s^{-1})$–6.91[44]
    42${\rm{e+O_{2}^{+}\to O_{2}}} $4 × 10–18 (m3·s–1)/[43]
    43${\rm{e+O_{4}^{+}\to 2O_{2}}} $$2.25\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$/[44]
    44${\rm{He^{\ast}+ 2He \to He_{2}^{\ast }+He}} $1.3 × 10–45 (m6·s–1)/[41]
    45${\rm{He^{+}+2He\to He_{2}^{+}+He}} $1 × 10–43 (m6·s–1)/[41]
    46${\rm{N_{2}+N_{2}+N_{2}^{+}\to N_{2}+N_{4}^{+}}} $5 × 10–41 (m6·s–1)/[44]
    47${\rm{O^{-}+O_{2}^{+}\to O+O_{2}}} $2 × 10–13 (m3·s–1)/[41]
    48${\rm{O_{2}^{-}+O_{2}^{+}\to O_{2}+O_{2}}} $2 × 10–13 (m3·s–1)/[41]
    49${\rm{O_{2}^{-}+O_{2}^{+}+O_{2}\to 3O_{2}}} $2 × 10–37 (m6·s–1)/[44]
    50${\rm{O_{2}^{-}+O_{4}^{+}+O_{2}\to 4O_{2}}} $2 × 10–37 (m6·s–1)/[44]
    51${\rm{O_{2}+O_{2}+O_{2}^{+}\to O_{2}+O_{4}^{+}}} $2.4 × 10–42 (m6·s–1)/[44]
    52${\rm{He^{\ast }+N_{2}\to e+He+N_{2}^{+}}} $7 × 10–17 (m3·s–1)/[41]
    53${\rm{He_{2}^{\ast }+N_{2}\to e+2He+N_{2}^{+}}} $7 × 10–17 (m3·s–1)/[41]
    54${\rm{He_{2}^{\ast }+O_{2}\to e+2He+O_{2}^{+}}} $3.6 × 10–16 (m3·s–1)/[43]
    55${\rm{He^{\ast }+O_{2}\to e+He+O_{2}^{+}}} $2.6 × 10–16 (m3·s–1)/[43]
    56${\rm{He_{2}^{+}+N_{2}\to N_{2}^{+}+2He}} $5 × 10–16 (m3·s–1)/[41]
    57${\rm{He^{+}+N_{2}\to N_{2}^{+}+He}} $5 × 10–16 (m3·s–1)/[41]
    58${\rm{He+N_{2}+N_{2}^{+}\to He+N_{4}^{+}}} $8.9 × 10–42 (m6·s–1)/[42]
    59${\rm{He+O_{2}+O_{2}^{+}\to He+O_{4}^{+}}} $5.8 × 10–43 (m6·s–1)/[42]
    60${\rm{He+O_{2}^{-}+O_{2}^{+}\to He+2O_{2}}} $2 × 10–37 (m6·s–1)/[43]
    61${\rm{O_{2}^{-}+O_{2}^{+}+N_{2}\to 2O_{2}+N_{2}}} $2 × 10–37 (m6·s–1)/[43]
    62${\rm{O_{2}^{-}+O_{4}^{+}+N_{2}\to 3O_{2}+N_{2}}} $2 × 10–37 (m6·s–1)/[44]
    63${\rm{N_{2}+O_{2}+N_{2}^{+}\to O_{2}+N_{4}^{+}}} $5 × 10–41 (m6·s–1)/[44]
    64${\rm{O_{2}+N_{4}^{+}\to 2N_{2}+O_{2}^{+}}} $2.5 × 10–16 (m3·s–1)/[44]
    65${\rm{O_{2}+N+N\to O_{2}+N_{2}}} $3.9 × 10–45 (m6·s–1)/[43]
    66${\rm{O+O+N\to O_{2}+N}} $3.2 × 10–45 (m6·s–1)/[42]
    注: f(c, ε)表示速率系数是通过电子能量分布函数(EEDF)使用相关文献中的横截面获得的. c表示He摩尔分数, ε表示平均电子能量(eV), neTe表示电子密度(m–3) 和电子温度(eV). 他代表He(23S)和He(21S). He2*代表He2(a3∑u+). N2(VIB v1), N2(VIB 3v1), N2(VIB 4v1)和N2(VIB 5v1)被视为N2, O2(VIB 3v1), O2(VIB 4v1), O2(A1), O2(B1)和O2(EXC)被视为O2; O(1D)和O(1S)被视为O.
    下载: 导出CSV

    表 3  $ \rm N_2^+, N_4^+和O_2^+ $相关的化学反应速率

    Table 3.  Reaction rates involving $ \rm N_2^+, N_4^+ \text{ and }O_2^+ $

    反应cHe = 98%轮
    廓线上
    化学反应速率
    /(mol·m–2·s–1)
    cHe = 95%轮
    廓线上
    化学反应速率
    /(mol·m–2·s–1)
    cHe = 90%轮
    廓线上
    化学反应速率
    /(mol·m–2·s–1)
    R41: e + $\rm O_2^+$ → O + O2.98 × 10–31.27 × 10–33.81 × 10–4
    R46: N2 + N2 + $\rm N_2^+ $ → N2 + $\rm N_4^+$1.67 × 10–41.61 × 10–52.67 × 10–7
    R51: O2 + O2 + $\rm O_2^+$ → O2 + $\rm O_4^+$8.86 × 10–73.83 × 10–66.70 × 10–6
    R52: He* + N2 → e + He + $\rm N_2^+ $1.29 × 10–34.48 × 10–54.96 × 10–7
    R55: He* + O2 → e + He + $\rm O_2^+$1.28 × 10–34.42 × 10–54.90 × 10–7
    R58: He + N2 + $\rm N_2^+ $ → He + $\rm N_4^+ $1.86 × 10–36.92 × 10–55.41 × 10–7
    R63: N2 + O2 + $\rm N_2^+ $ → O2 + $\rm N_4^+ $4.45 × 10–54.29 × 10–67.09 × 10–8
    R64: O2 + $\rm N_4^+ $ → 2N2 + $\rm O_2^+$1.59 × 10–39.67 × 10–41.10 × 10–4
    下载: 导出CSV
  • [1]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [2]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [3]

    李寿哲, 谢士辉, 吴悦, 廖宏达 2021 高电压技术 47 3012Google Scholar

    Li S Z, Xie S H, Wu Y, Liao H D 2021 High Voltage Eng. 47 3012Google Scholar

    [4]

    Winter J, Brandenburg R, Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001Google Scholar

    [5]

    易善婷, 刘峰, 方志 2019 高电压技术 45 1936Google Scholar

    Yi S T, Liu F, Fang Z 2019 High Voltage Eng. 45 1936Google Scholar

    [6]

    Lu X, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar

    [7]

    Cai Y K, Lv L, Lu X P 2021 High Voltage 6 1092Google Scholar

    [8]

    潘如政, 臧子豪, 黄邦斗, 朱文超, 章程, 邵涛 2021 高电压技术 47 3696Google Scholar

    Pan R Z, Zang Z H, Huang B D, Zhu W C, Zhang C, Shao T 2021 High Voltage Eng. 47 3696Google Scholar

    [9]

    Neyts E C, Ostrikov K K, Sunkara M K, Bogaerts A 2015 Chem. Rev. 115 13408Google Scholar

    [10]

    Wu S L, Yang Q, Shao T, Zhang Z T, Huang L Y 2020 High Voltage 5 15Google Scholar

    [11]

    Cheng H, Liu X, Lu X P, Liu D W 2016 High Voltage 1 62Google Scholar

    [12]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 物理学报 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [13]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [14]

    Penkov O V, Khadem M, Lim W S, Kim D E 2015 J. Coat. Technol. Res. 12 225Google Scholar

    [15]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [16]

    朱彦熔, 常正实 2022 物理学报 71 025202Google Scholar

    Zhu Y R, Chang Z S 2022 Acta Phys. Sin. 71 025202Google Scholar

    [17]

    王瑞雪, 沈苑, 章程, 牛铮, 方志, 邵涛 2015 高电压技术 41 2903Google Scholar

    Wang R X, Shen Y, Zhang C, Niu Z, Fang Z, Shao T 2015 High Voltage Eng. 41 2903Google Scholar

    [18]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

    [19]

    Léveillé V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467Google Scholar

    [20]

    Reuter S, Winter J, Schmidt-Bleker A, Tresp H, Hammer M U, Weltmann K-D 2012 IEEE Trans. Plasma Sci. 40 2788Google Scholar

    [21]

    Ohashi H, Oyama K, Mitani T, Naiki K, Nakayama T, Ito H 2017 IEEE Trans. Plasma Sci. 45 2481Google Scholar

    [22]

    Winter J, Sousa J S, Sadeghi N, Schmidt-Bleker A, Reuter S, Puech V 2015 Plasma Sources Sci. Technol. 24 025015Google Scholar

    [23]

    Nguyen D B, Trinh Q H, Mok Y S, Lee W G 2020 Plasma Sources Sci. Technol. 29 035014Google Scholar

    [24]

    Karakas E, Koklu M, Laroussi M 2010 J. Phys. D:Appl. Phys. 43 155202Google Scholar

    [25]

    赵莉华, 冀一玮, 尚豪, 黄小龙, 任俊文, 宁文军 2021 中国电机工程学报 41 6090Google Scholar

    Zhao L H, Ji Y W, Shang H, Huang X L, Ren J W, Ning W J 2021 Proc. CSEE 41 6090Google Scholar

    [26]

    Yan W, Economou D J 2017 J. Phys. D:Appl. Phys. 50 415205Google Scholar

    [27]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [28]

    Breden D, Miki K, Raja L L 2012 Plasma Sources Sci. Technol. 21 034011Google Scholar

    [29]

    Lazarou C, Anastassiou C, Topala I, Chiper A S, Mihaila I, Pohoata V, Georghiou G E 2018 Plasma Sources Sci. Technol. 27 105007Google Scholar

    [30]

    Lin P, Zhang J, Nguyen T, Donnelly V M, Economou D J 2021 J. Phys. D:Appl. Phys. 54 075205Google Scholar

    [31]

    Liu X Y, Pei X K, Lu X P, Liu D W 2014 Plasma Sources Sci. Technol. 23 035007Google Scholar

    [32]

    Kettlitz M, Höft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [33]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D:Appl. Phys. 50 345201Google Scholar

    [34]

    Zhang Y H, Ning W J, Dai D 2018 AIP Adv. 8 035008Google Scholar

    [35]

    Pinchuk M, Stepanova O, Kurakina N, Spodobin V 2017 J. Phys. Conf. Ser. 830 012060Google Scholar

    [36]

    Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar

    [37]

    Basher A H, Mohamed A-A H 2018 J. Appl. Phys. 123 193302Google Scholar

    [38]

    Xiong R H, Xiong Q, Nikiforov A Y, Vanraes P, Leys C 2012 J. Appl. Phys. 112 033305Google Scholar

    [39]

    Viegas P, Slikboer E, Obrusník A, Bonaventura Z, Sobota A, Garcia-Caurel E, Guaitella O, Bourdon A 2018 Plasma Sources Sci. Technol. 27 094002Google Scholar

    [40]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [41]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [42]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [43]

    Murakami T, Niemi K, Gans T, O'Connell D, Graham W G 2012 Plasma Sources Sci. Technol. 22 015003Google Scholar

    [44]

    Kossyi A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • [1] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟. 物理学报, 2025, 74(2): 025202. doi: 10.7498/aps.74.20241241
    [2] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [3] 周雄峰, 陈彬, 刘坤. 氩气等离子体射流特性: 电压、气流、外磁场的综合影响. 物理学报, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [4] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [5] 朱彦熔, 常正实. 脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响. 物理学报, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [6] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [7] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [8] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [9] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [10] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [11] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [12] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [13] 黄骏, 陈维, 李辉, 王鹏业, 杨思泽. 大气压冷等离子体射流灭活子宫颈癌Hela细胞. 物理学报, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [14] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [15] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [16] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究. 物理学报, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [17] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [18] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [19] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究. 物理学报, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
计量
  • 文章访问数:  4704
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-14
  • 上网日期:  2022-08-11
  • 刊出日期:  2022-08-20

/

返回文章
返回