-
在大气压等离子体射流应用中, 环境气体对射流流出物的影响不可忽视, 尤其是在某些对环境粒子高度敏感的特定场景中. 同轴双管式射流装置可用于抑制射流流出物与环境气体之间的相互扩散, 从而控制射流流出物的化学性质. 本文对同轴双管式氦气大气压等离子体射流在不同屏蔽气体流速下的放电特性和化学性质进行了数值仿真研究, 并通过实验光学图像对仿真模型加以验证. 结果表明, 相比于没有屏蔽气体的情况, 在高流速条件下放电得到增强, 而在低流速下放电较弱; 随着流速的增加, 空间中的粒子数均随之增加, 这可以归因于由屏蔽气体流速增加而产生的更宽的主放电通道. 此外, 不同浓度轮廓线上的离子径向通量受到流速的影响也存在很大差异. 本研究进一步揭示了不同的放电位置对氮氧粒子产生的影响, 加深了关于屏蔽气体流速影响等离子体射流放电行为的认识, 并可能为等离子体射流的进一步应用开辟新的机会.In the application of atmospheric pressure plasma jet, the influence of ambient gas cannot be ignored, especially in some specific scenarios which are highly sensitive to ambient particles. Coaxial double-tube plasma jet device is a promising method of controlling the chemical properties of jet effluent by restraining the mutual diffusion between jet effluent and ambient gas. In this work, the discharge characteristics and chemical properties of coaxial double-tube helium atmospheric pressure plasma jet at different flow rates of shielding gas are studied numerically, and the model is validated by experimental optical images. The results illustrate the enhanced discharge at the high flow rate, the weaker discharge at the low flow rate, and discharge behaviors without shielding gas as well. With the increase of shielded gas flow rate, the particle density increases in the discharge space, which can be attributed to the wider main discharge channel caused by the increase of shielding gas flow rate. In addition, the analysis shows the great difference in ion fluxes affected by the flow rate of the SG between the contour lines of different helium mole fractions. This study further reveals that different discharge positions have a great influence on the generation of nitrogen and oxygen particles, thus deepening the understanding of influence of shielding gas flow rate on discharge behavior, and may open up new opportunities for the further application of plasma jet.
-
Keywords:
- atmospheric pressure plasma jet /
- coaxial double-tube device /
- shielding gas /
- distribution of species
[1] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 70 095205Google Scholar
Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar
[2] 张海宝, 陈强 2021 物理学报 70 095203Google Scholar
Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar
[3] 李寿哲, 谢士辉, 吴悦, 廖宏达 2021 高电压技术 47 3012Google Scholar
Li S Z, Xie S H, Wu Y, Liao H D 2021 High Voltage Eng. 47 3012Google Scholar
[4] Winter J, Brandenburg R, Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001Google Scholar
[5] 易善婷, 刘峰, 方志 2019 高电压技术 45 1936Google Scholar
Yi S T, Liu F, Fang Z 2019 High Voltage Eng. 45 1936Google Scholar
[6] Lu X, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar
[7] Cai Y K, Lv L, Lu X P 2021 High Voltage 6 1092Google Scholar
[8] 潘如政, 臧子豪, 黄邦斗, 朱文超, 章程, 邵涛 2021 高电压技术 47 3696Google Scholar
Pan R Z, Zang Z H, Huang B D, Zhu W C, Zhang C, Shao T 2021 High Voltage Eng. 47 3696Google Scholar
[9] Neyts E C, Ostrikov K K, Sunkara M K, Bogaerts A 2015 Chem. Rev. 115 13408Google Scholar
[10] Wu S L, Yang Q, Shao T, Zhang Z T, Huang L Y 2020 High Voltage 5 15Google Scholar
[11] Cheng H, Liu X, Lu X P, Liu D W 2016 High Voltage 1 62Google Scholar
[12] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 物理学报 70 155201Google Scholar
Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar
[13] Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar
[14] Penkov O V, Khadem M, Lim W S, Kim D E 2015 J. Coat. Technol. Res. 12 225Google Scholar
[15] Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar
[16] 朱彦熔, 常正实 2022 物理学报 71 025202Google Scholar
Zhu Y R, Chang Z S 2022 Acta Phys. Sin. 71 025202Google Scholar
[17] 王瑞雪, 沈苑, 章程, 牛铮, 方志, 邵涛 2015 高电压技术 41 2903Google Scholar
Wang R X, Shen Y, Zhang C, Niu Z, Fang Z, Shao T 2015 High Voltage Eng. 41 2903Google Scholar
[18] Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar
[19] Léveillé V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467Google Scholar
[20] Reuter S, Winter J, Schmidt-Bleker A, Tresp H, Hammer M U, Weltmann K-D 2012 IEEE Trans. Plasma Sci. 40 2788Google Scholar
[21] Ohashi H, Oyama K, Mitani T, Naiki K, Nakayama T, Ito H 2017 IEEE Trans. Plasma Sci. 45 2481Google Scholar
[22] Winter J, Sousa J S, Sadeghi N, Schmidt-Bleker A, Reuter S, Puech V 2015 Plasma Sources Sci. Technol. 24 025015Google Scholar
[23] Nguyen D B, Trinh Q H, Mok Y S, Lee W G 2020 Plasma Sources Sci. Technol. 29 035014Google Scholar
[24] Karakas E, Koklu M, Laroussi M 2010 J. Phys. D:Appl. Phys. 43 155202Google Scholar
[25] 赵莉华, 冀一玮, 尚豪, 黄小龙, 任俊文, 宁文军 2021 中国电机工程学报 41 6090Google Scholar
Zhao L H, Ji Y W, Shang H, Huang X L, Ren J W, Ning W J 2021 Proc. CSEE 41 6090Google Scholar
[26] Yan W, Economou D J 2017 J. Phys. D:Appl. Phys. 50 415205Google Scholar
[27] Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar
[28] Breden D, Miki K, Raja L L 2012 Plasma Sources Sci. Technol. 21 034011Google Scholar
[29] Lazarou C, Anastassiou C, Topala I, Chiper A S, Mihaila I, Pohoata V, Georghiou G E 2018 Plasma Sources Sci. Technol. 27 105007Google Scholar
[30] Lin P, Zhang J, Nguyen T, Donnelly V M, Economou D J 2021 J. Phys. D:Appl. Phys. 54 075205Google Scholar
[31] Liu X Y, Pei X K, Lu X P, Liu D W 2014 Plasma Sources Sci. Technol. 23 035007Google Scholar
[32] Kettlitz M, Höft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar
[33] Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D:Appl. Phys. 50 345201Google Scholar
[34] Zhang Y H, Ning W J, Dai D 2018 AIP Adv. 8 035008Google Scholar
[35] Pinchuk M, Stepanova O, Kurakina N, Spodobin V 2017 J. Phys. Conf. Ser. 830 012060Google Scholar
[36] Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar
[37] Basher A H, Mohamed A-A H 2018 J. Appl. Phys. 123 193302Google Scholar
[38] Xiong R H, Xiong Q, Nikiforov A Y, Vanraes P, Leys C 2012 J. Appl. Phys. 112 033305Google Scholar
[39] Viegas P, Slikboer E, Obrusník A, Bonaventura Z, Sobota A, Garcia-Caurel E, Guaitella O, Bourdon A 2018 Plasma Sources Sci. Technol. 27 094002Google Scholar
[40] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[41] Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar
[42] Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar
[43] Murakami T, Niemi K, Gans T, O'Connell D, Graham W G 2012 Plasma Sources Sci. Technol. 22 015003Google Scholar
[44] Kossyi A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar
-
图 5 当SG流速处于(a) 0, (b) 1, (c) 2和(d) 3 slm情况下, 电子密度ne(单位: m–3, 以对数形式表示)的时空分布. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线
Fig. 5. Spatial and temporal profiles of the electron density ne (unit: m–3, in 10 logarithmic scale) for SG flow rates of (a) 0, (b) 1, (c) 2 and (d) 3 slm. The magenta lines are the contour lines of different helium mole fractions.
图 6 SG流速为(a) 0 和(b) 3 slm情况下放电空间中电离率(单位: mol·m–3·s–1, 以对数形式表示)的时空演化情况. 洋红色线分别表示不同氦气摩尔分数的等值轮廓线
Fig. 6. Development of the ionization rate (unit: mol·m–3·s–1, in 10 logarithmic scale) in the discharge region for SG flow rate of (a) 0 and (b) 3 slm. The magenta lines are the contour lines of different helium mole fractions.
表 1 中性气体流动模型的边界条件
Table 1. Boundary conditions of the neutral gas flow model.
边界 表达式 备注 AX — 对称轴 BC ui = 3 slm, c = 1 工作气体入口 DE uo, c = 0 屏蔽气体入口 FG u = 0.1 m/s, c = 0 环境空气入口 GW p = 1 atm, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$ — BPO, CQRD,
UW, ESTFu = 0 m/s, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$ — 表 2 等离子体动力学模型的边界条件
Table 2. Boundary conditions of the plasma dynamics model.
边界 表达式 备注 IPO V = V0, 方程(9)—方程(12) 外施电压 HX — 对称轴 IJ, KL $- {\boldsymbol{n}} \cdot {\boldsymbol{D}} = 0$, $- {\boldsymbol{n} } \cdot {\boldsymbol{\varGamma} } {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$ TV V = 0, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$ 接地 TM, XYV V = 0 接地 UV, LST, JQRK 方程(9)—方程(12), 方程(14), 方程(15) 表 A 等离子体化学反应
Table A. Chemical reactions considered in the plasma dynamics model.
序号 反应方程式 速率常数 能量损耗
/eV参考
文献1 ${\rm{e+He\to e+He}}$ f(c, ε) (m3·s–1) / [40] 2 ${\rm{e+He\to e+He^{\ast}}}$ f(c, ε) (m3·s–1) 19.82 [40] 3 ${\rm{e+He^{\ast }\to e+He}} $ f(c, ε) (m3·s–1) –19.82 [40] 4 ${\rm{e+He\to 2e+He^{+}}} $ f(c, ε) (m3·s–1) 24.587 [40] 5 ${\rm{e+N_{2}\to e+N_{2}}} $ f(c, ε) (m3·s–1) / [40] 6 ${\rm{e+N_{2}\to e+N_{2}(VIB\, \textit{v}1)}}$ f(c, ε) (m3·s–1) 0.2889 [40] 7 ${\rm{e+N_{2}\to e+N_{2}(VIB\, 3\textit{v}1)} }$ f(c, ε) (m3·s–1) 0.8559 [40] 8 ${\rm{e+N_{2}\to e+N_{2}(VIB\, 4\textit{v}1)} }$ f(c, ε) (m3·s–1) 1.1342 [40] 9 ${\rm{e+N_{2}\to e+N_{2}(VIB \,5\textit{v}1)} }$ f(c, ε) (m3·s–1) 1.4088 [40] 10 ${\rm{e+N_{2}\to 2e+N_{2}^{+}}} $ f(c, ε) (m3·s–1) 15.6 [40] 11 ${\rm{e+O_{2}\to e+O_{2}}} $ f(c, ε) (m3·s–1) / [40] 12 ${\rm{e+O_{2}\to O+O^{-}}} $ f(c, ε) (m3·s–1) / [40] 13 ${\rm{e+O_{2}\to O_{2}^{-}}} $ f(c, ε) (m3·s–1) / [40] 14 ${\rm{e+O_{2}\to e+O_{2}(VIB\, 3\textit{v}1)} }$ f(c, ε) (m3·s–1) 0.57 [40] 15 ${\rm{e+O_{2}\to e+O_{2}(VIB\, 4\textit{v}1)} }$ f(c, ε) (m3·s–1) 0.75 [40] 16 ${\rm{e+O_{2}\to e+O_{2} } }(\rm A1)$ f(c, ε) (m3·s–1) 0.997 [40] 17 ${\rm{e+O_{2}\to e+O_{2}}} $ f(c, ε) (m3·s–1) –0.997 [40] 18 ${\rm{e+O_{2}\to e+O_{2} } }(\rm B1)$ f(c, ε) (m3·s–1) 1.627 [40] 19 ${\rm{e+O_{2}\to e+O_{2}}} $ f(c, ε) (m3·s–1) –1.627 [40] 20 ${\rm{e+O_{2}\to e+O_{2}(EXC)}} $ f(c, ε) (m3·s–1) 4.5 [40] 21 ${\rm{e+O_{2}\to e+O+O}} $ f(c, ε) (m3·s–1) 5.58 [40] 22 ${\rm{e+O_{2}\to e+O+O(^{1}D)}} $ f(c, ε) (m3·s–1) 8.4 [40] 23 ${\rm{e+O_{2}\to 2e+O_{2}^{+}}}$ f(c, ε)(m3·s–1) 12.1 [40] 24 ${\rm{e+He^{\ast }\to 2e+He^{+}}} $ $4.661 \times {10^{ - 16} } \times {T_{\text{e} } ^{0.6}} \times { {\rm{e} }^{ - 4.78/T_{\text{e} } } }\,({\rm m}^3{\cdot} {\rm{s} }^{-1})$ 4.78 [41] 25 ${\rm{e+He_{2}^{\ast }\to 2e+He_{2}^{+}}} $ $1.268 \times {10^{ - 18} } \times {T_{\text{e} }^{0.71} }\times { {\text{e} }^{ - 3.4/T_{\text{e} } } }\, ({\rm m}^3{\cdot} {\rm{s} }^{-1})$ 3.4 [41] 26 ${\rm{2He^{\ast }\to e+He+He^{+}}} $ 4.5 × 10–16 (m3·s–1) –15 [41] 27 ${\rm{e+He_{2}^{+}\to He^{\ast}+He}} $ $5.386\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [41] 28 ${\rm{e+He^{+}\to He^{\ast}}} $ $6.76\times10^{-19}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [41] 29 ${\rm{2e+He^{+}\to e+He^{\ast}}} $ $6.186\times10^{-39}\times T_{\rm e}^{-4.4}\rm (m^3{\cdot} s^{-1})$ / [31] 30 ${\rm{e+He+He^{+}\to He+He^{\ast}}} $ $6.66\times10^{-42}\times T_{\rm e}^{-2}\rm (m^6{\cdot} s^{-1})$ / [31] 31 ${\rm{2e+He_{2}^{+}\to He_{2}^{\ast}+e}} $ 1.2 × 10–33 (m6·s–1) / [31] 32 ${\rm{e+He+He_{2}^{+}\to He_{2}^{\ast }+He}} $ 1.5 × 10–39 (m6·s–1) / [31] 33 ${\rm{e+He+He_{2}^{+}\to He^{\ast }+2He}} $ 3.5 × 10–39 (m6·s–1) / [31] 34 ${\rm{2e+He_{2}^{+}\to He^{\ast }+He+e}} $ 2.8 × 10–32 (m6·s–1) / [31] 35 ${\rm{e+N_{2}\to e+N+N}} $ $1\times10^{-16}\times T_{\rm e}^{-0.5}\times {\rm e}^{{-16}/T_{\rm{e} }}\rm (m^3{\cdot} s^{-1})$ 9.757 [42] 36 ${\rm{e+N_{2}^{+}\to N+N}} $ $4.8\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [42] 37 ${\rm{e+N_{2}^{+}\to N_{2}}} $ $7.72\times10^{-14}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [43] 38 ${\rm{e+N_{4}^{+}\to 2N_{2}}} $ $3.22\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [44] 39 ${\rm{2e+N_{2}^{+}\to N_{2}+e}} $ $3.165\times10^{-42}\times T_{\rm e}^{-0.8}\rm (m^6 \cdot s^{-1})$ / [44] 40 ${\rm{e+2O_{2}\to O_{2}+O_{2}^{-}}} $ $5.17\times10^{-43}\times T_{\rm e}^{-1}\rm (m^6{\cdot} s^{-1})$ –0.43 [44] 41 ${\rm{e+O_{2}^{+}\to O+O}} $ $6\times10^{-11}\times T_{\rm e}^{-1}\rm (m^3{\cdot} s^{-1})$ –6.91 [44] 42 ${\rm{e+O_{2}^{+}\to O_{2}}} $ 4 × 10–18 (m3·s–1) / [43] 43 ${\rm{e+O_{4}^{+}\to 2O_{2}}} $ $2.25\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [44] 44 ${\rm{He^{\ast}+ 2He \to He_{2}^{\ast }+He}} $ 1.3 × 10–45 (m6·s–1) / [41] 45 ${\rm{He^{+}+2He\to He_{2}^{+}+He}} $ 1 × 10–43 (m6·s–1) / [41] 46 ${\rm{N_{2}+N_{2}+N_{2}^{+}\to N_{2}+N_{4}^{+}}} $ 5 × 10–41 (m6·s–1) / [44] 47 ${\rm{O^{-}+O_{2}^{+}\to O+O_{2}}} $ 2 × 10–13 (m3·s–1) / [41] 48 ${\rm{O_{2}^{-}+O_{2}^{+}\to O_{2}+O_{2}}} $ 2 × 10–13 (m3·s–1) / [41] 49 ${\rm{O_{2}^{-}+O_{2}^{+}+O_{2}\to 3O_{2}}} $ 2 × 10–37 (m6·s–1) / [44] 50 ${\rm{O_{2}^{-}+O_{4}^{+}+O_{2}\to 4O_{2}}} $ 2 × 10–37 (m6·s–1) / [44] 51 ${\rm{O_{2}+O_{2}+O_{2}^{+}\to O_{2}+O_{4}^{+}}} $ 2.4 × 10–42 (m6·s–1) / [44] 52 ${\rm{He^{\ast }+N_{2}\to e+He+N_{2}^{+}}} $ 7 × 10–17 (m3·s–1) / [41] 53 ${\rm{He_{2}^{\ast }+N_{2}\to e+2He+N_{2}^{+}}} $ 7 × 10–17 (m3·s–1) / [41] 54 ${\rm{He_{2}^{\ast }+O_{2}\to e+2He+O_{2}^{+}}} $ 3.6 × 10–16 (m3·s–1) / [43] 55 ${\rm{He^{\ast }+O_{2}\to e+He+O_{2}^{+}}} $ 2.6 × 10–16 (m3·s–1) / [43] 56 ${\rm{He_{2}^{+}+N_{2}\to N_{2}^{+}+2He}} $ 5 × 10–16 (m3·s–1) / [41] 57 ${\rm{He^{+}+N_{2}\to N_{2}^{+}+He}} $ 5 × 10–16 (m3·s–1) / [41] 58 ${\rm{He+N_{2}+N_{2}^{+}\to He+N_{4}^{+}}} $ 8.9 × 10–42 (m6·s–1) / [42] 59 ${\rm{He+O_{2}+O_{2}^{+}\to He+O_{4}^{+}}} $ 5.8 × 10–43 (m6·s–1) / [42] 60 ${\rm{He+O_{2}^{-}+O_{2}^{+}\to He+2O_{2}}} $ 2 × 10–37 (m6·s–1) / [43] 61 ${\rm{O_{2}^{-}+O_{2}^{+}+N_{2}\to 2O_{2}+N_{2}}} $ 2 × 10–37 (m6·s–1) / [43] 62 ${\rm{O_{2}^{-}+O_{4}^{+}+N_{2}\to 3O_{2}+N_{2}}} $ 2 × 10–37 (m6·s–1) / [44] 63 ${\rm{N_{2}+O_{2}+N_{2}^{+}\to O_{2}+N_{4}^{+}}} $ 5 × 10–41 (m6·s–1) / [44] 64 ${\rm{O_{2}+N_{4}^{+}\to 2N_{2}+O_{2}^{+}}} $ 2.5 × 10–16 (m3·s–1) / [44] 65 ${\rm{O_{2}+N+N\to O_{2}+N_{2}}} $ 3.9 × 10–45 (m6·s–1) / [43] 66 ${\rm{O+O+N\to O_{2}+N}} $ 3.2 × 10–45 (m6·s–1) / [42] 注: f(c, ε)表示速率系数是通过电子能量分布函数(EEDF)使用相关文献中的横截面获得的. c表示He摩尔分数, ε表示平均电子能量(eV), ne和Te表示电子密度(m–3) 和电子温度(eV). 他代表He(23S)和He(21S). He2*代表He2(a3∑u+). N2(VIB v1), N2(VIB 3v1), N2(VIB 4v1)和N2(VIB 5v1)被视为N2, O2(VIB 3v1), O2(VIB 4v1), O2(A1), O2(B1)和O2(EXC)被视为O2; O(1D)和O(1S)被视为O. 表 3 与
$ \rm N_2^+, N_4^+和O_2^+ $ 相关的化学反应速率Table 3. Reaction rates involving
$ \rm N_2^+, N_4^+ \text{ and }O_2^+ $ 反应 cHe = 98%轮
廓线上
化学反应速率
/(mol·m–2·s–1)cHe = 95%轮
廓线上
化学反应速率
/(mol·m–2·s–1)cHe = 90%轮
廓线上
化学反应速率
/(mol·m–2·s–1)R41: e + $\rm O_2^+$ → O + O 2.98 × 10–3 1.27 × 10–3 3.81 × 10–4 R46: N2 + N2 + $\rm N_2^+ $ → N2 + $\rm N_4^+$ 1.67 × 10–4 1.61 × 10–5 2.67 × 10–7 R51: O2 + O2 + $\rm O_2^+$ → O2 + $\rm O_4^+$ 8.86 × 10–7 3.83 × 10–6 6.70 × 10–6 R52: He* + N2 → e + He + $\rm N_2^+ $ 1.29 × 10–3 4.48 × 10–5 4.96 × 10–7 R55: He* + O2 → e + He + $\rm O_2^+$ 1.28 × 10–3 4.42 × 10–5 4.90 × 10–7 R58: He + N2 + $\rm N_2^+ $ → He + $\rm N_4^+ $ 1.86 × 10–3 6.92 × 10–5 5.41 × 10–7 R63: N2 + O2 + $\rm N_2^+ $ → O2 + $\rm N_4^+ $ 4.45 × 10–5 4.29 × 10–6 7.09 × 10–8 R64: O2 + $\rm N_4^+ $ → 2N2 + $\rm O_2^+$ 1.59 × 10–3 9.67 × 10–4 1.10 × 10–4 -
[1] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 70 095205Google Scholar
Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar
[2] 张海宝, 陈强 2021 物理学报 70 095203Google Scholar
Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar
[3] 李寿哲, 谢士辉, 吴悦, 廖宏达 2021 高电压技术 47 3012Google Scholar
Li S Z, Xie S H, Wu Y, Liao H D 2021 High Voltage Eng. 47 3012Google Scholar
[4] Winter J, Brandenburg R, Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001Google Scholar
[5] 易善婷, 刘峰, 方志 2019 高电压技术 45 1936Google Scholar
Yi S T, Liu F, Fang Z 2019 High Voltage Eng. 45 1936Google Scholar
[6] Lu X, Ostrikov K 2018 Appl. Phys. Rev. 5 031102Google Scholar
[7] Cai Y K, Lv L, Lu X P 2021 High Voltage 6 1092Google Scholar
[8] 潘如政, 臧子豪, 黄邦斗, 朱文超, 章程, 邵涛 2021 高电压技术 47 3696Google Scholar
Pan R Z, Zang Z H, Huang B D, Zhu W C, Zhang C, Shao T 2021 High Voltage Eng. 47 3696Google Scholar
[9] Neyts E C, Ostrikov K K, Sunkara M K, Bogaerts A 2015 Chem. Rev. 115 13408Google Scholar
[10] Wu S L, Yang Q, Shao T, Zhang Z T, Huang L Y 2020 High Voltage 5 15Google Scholar
[11] Cheng H, Liu X, Lu X P, Liu D W 2016 High Voltage 1 62Google Scholar
[12] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 物理学报 70 155201Google Scholar
Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar
[13] Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar
[14] Penkov O V, Khadem M, Lim W S, Kim D E 2015 J. Coat. Technol. Res. 12 225Google Scholar
[15] Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar
[16] 朱彦熔, 常正实 2022 物理学报 71 025202Google Scholar
Zhu Y R, Chang Z S 2022 Acta Phys. Sin. 71 025202Google Scholar
[17] 王瑞雪, 沈苑, 章程, 牛铮, 方志, 邵涛 2015 高电压技术 41 2903Google Scholar
Wang R X, Shen Y, Zhang C, Niu Z, Fang Z, Shao T 2015 High Voltage Eng. 41 2903Google Scholar
[18] Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar
[19] Léveillé V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467Google Scholar
[20] Reuter S, Winter J, Schmidt-Bleker A, Tresp H, Hammer M U, Weltmann K-D 2012 IEEE Trans. Plasma Sci. 40 2788Google Scholar
[21] Ohashi H, Oyama K, Mitani T, Naiki K, Nakayama T, Ito H 2017 IEEE Trans. Plasma Sci. 45 2481Google Scholar
[22] Winter J, Sousa J S, Sadeghi N, Schmidt-Bleker A, Reuter S, Puech V 2015 Plasma Sources Sci. Technol. 24 025015Google Scholar
[23] Nguyen D B, Trinh Q H, Mok Y S, Lee W G 2020 Plasma Sources Sci. Technol. 29 035014Google Scholar
[24] Karakas E, Koklu M, Laroussi M 2010 J. Phys. D:Appl. Phys. 43 155202Google Scholar
[25] 赵莉华, 冀一玮, 尚豪, 黄小龙, 任俊文, 宁文军 2021 中国电机工程学报 41 6090Google Scholar
Zhao L H, Ji Y W, Shang H, Huang X L, Ren J W, Ning W J 2021 Proc. CSEE 41 6090Google Scholar
[26] Yan W, Economou D J 2017 J. Phys. D:Appl. Phys. 50 415205Google Scholar
[27] Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar
[28] Breden D, Miki K, Raja L L 2012 Plasma Sources Sci. Technol. 21 034011Google Scholar
[29] Lazarou C, Anastassiou C, Topala I, Chiper A S, Mihaila I, Pohoata V, Georghiou G E 2018 Plasma Sources Sci. Technol. 27 105007Google Scholar
[30] Lin P, Zhang J, Nguyen T, Donnelly V M, Economou D J 2021 J. Phys. D:Appl. Phys. 54 075205Google Scholar
[31] Liu X Y, Pei X K, Lu X P, Liu D W 2014 Plasma Sources Sci. Technol. 23 035007Google Scholar
[32] Kettlitz M, Höft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar
[33] Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D:Appl. Phys. 50 345201Google Scholar
[34] Zhang Y H, Ning W J, Dai D 2018 AIP Adv. 8 035008Google Scholar
[35] Pinchuk M, Stepanova O, Kurakina N, Spodobin V 2017 J. Phys. Conf. Ser. 830 012060Google Scholar
[36] Mohamed A A H, Kolb J F, Schoenbach K H 2010 Eur. Phys. J. D 60 517Google Scholar
[37] Basher A H, Mohamed A-A H 2018 J. Appl. Phys. 123 193302Google Scholar
[38] Xiong R H, Xiong Q, Nikiforov A Y, Vanraes P, Leys C 2012 J. Appl. Phys. 112 033305Google Scholar
[39] Viegas P, Slikboer E, Obrusník A, Bonaventura Z, Sobota A, Garcia-Caurel E, Guaitella O, Bourdon A 2018 Plasma Sources Sci. Technol. 27 094002Google Scholar
[40] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[41] Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar
[42] Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar
[43] Murakami T, Niemi K, Gans T, O'Connell D, Graham W G 2012 Plasma Sources Sci. Technol. 22 015003Google Scholar
[44] Kossyi A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar
计量
- 文章访问数: 4704
- PDF下载量: 95
- 被引次数: 0