搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢氩等离子体中H原子Balmer 谱线超常展宽研究

栾伯晗 乔增熙 刘鹏 赵伟 鄂鹏 于达仁

引用本文:
Citation:

氢氩等离子体中H原子Balmer 谱线超常展宽研究

栾伯晗, 乔增熙, 刘鹏, 赵伟, 鄂鹏, 于达仁

Atomic-hydrogen Balmer line's abnormal broadening of argon and hydrogen plasma in hollow cathode

Luan Bo-Han, Qiao Zeng-Xi, Liu Peng, Zhao Wei, E Peng, Yu Da-Ren
PDF
导出引用
  • 在新能源的研究中, 氢能成为与太阳能、风能等一样的绿色能源. 分数H原子是在某些特定催化物(如Ar+)的作用下, 基态H原子可以向比基态能级更低的分数主量子数能级跃迁, 同时释放出大量能量. 通过对氢氩等离子体H原子Balmer 谱线超常展宽的规律性进行研究, 探讨这种伴随着大量能量释放的含H等离子体反应的存在性. 研究结果表明: 利用空心阴极放电管证实高能H原子的存在并首次发现超常展宽与氢氩配比的关系符合催化反应的特点; 通过比较研究的方法, 在实验上寻找加强含H等离子体反应的途径, 得到了更加清晰的H原子Balmer 谱线超常展宽(半高展宽达到0. 245 nm).
    In the study of new energy resource, hydrogen energy has become a green energy the same as solar energy and wind energy. Under the action of certain catalytic materials (such as Ar+), the hydrogen atom of fractional hydrogen plasma can transit from the ground state to the fractional principal quantum number energy levels lower than the ground level, meanwhile the energy is largely released. By the study of the law of Balmer line's abnormal broadening of atomic hydrogen in argon and hydrogen plasma, the possibility of hydrogen plasma reaction with such a large amount of releasing energy is discussed. The research is in two aspects: by using hollow cathode discharge tube, the existence of fast hydrogen is confirmed and the relationship between the abnormal broadening and the ratio of argon to hydrogen is found to be consistent with the feature of catalytic reaction; by the comparative approach and experiments of strengthening reaction of fractional hydrogen plasma, we have obtained the broader Balmer line's abnormal broadening (the half height broadening reaches 0.245 nm).
    • 基金项目: 国家杰出青年科学基金(批准号: 50925625)、国家自然科学基金(批准号: 11005025)、博士后科学基金(批准号: 20070420857)、黑龙江省博士后科研基金(批准号: LBH-Z07169)和黑龙江省教育厅科学技术研究计划(批准号: 11551379)资助的课题.
    • Funds: Project supported by the National Fund for Distinguished Young Scholars (Grant No. 50925625), the National Natural Science Foundation of China (Grant No. 11005025), China Postdoctoral Foundation 42 group (Grant No. 20070420857) and Scientific Research Fund of Heilongjiang Province Office of Education, China (Grant No. 11551379).
    [1]

    Kuraica M, Konjevic N 1992 Phys. Rev. A 46 4429

    [2]

    Mills R, Nansteel M, Ray P 2002 IEEE Trans. Plasma Sci. 30 639

    [3]

    Mills R, Ray P, Dhandapani B 2003 IEEE Trans. Plasma Sci. 31 338

    [4]

    Mills R, Chen X, Ray P 2003 Thermochim. Acta 406 35

    [5]

    Mills R, Ray P, Dhandapani B 2002 J. Mol. Struct. 643 43

    [6]

    Mills R 2000 Int. J. Hydrog. Energ. 25 1171

    [7]

    Akhtar K, Scharer J E 2009 J. Phys. D: Appl. Phys. 42 1

    [8]

    Mao Z Q 2005 Hydrogen Energy—The Green Energy Resource of 21st Century (Beijing: Chemical Industry Press) pp 36–40 (in Chinese) [毛宗强 2005 氢能——21世纪的绿色能源 (北京: 化学工业出版社) 第36-40]

    [9]

    Hong M Y, Ye M F, Sun X 1965 Acta Phys. Sin. 21 1606 (in Chinese) (洪明苑, 集茂福, 孙湘 1965 物理学报 21 1606)

    [10]

    Niu T Y, Cao J X, Liu L 2007 Acta Phys. Sin. 56 2330 (in Chinese) (牛田野, 曹金祥, 刘 磊 2007 物理学报 56 2330)

    [11]

    Chen Z, HeW, Pu Y K 2005 Acta Phys. Sin. 54 2153 (in Chinese) (陈卓, 何威, 蒲以康 2005 物理学报 54 2153)

    [12]

    Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303

    [13]

    Chen Y Z, Chen Q M, Li J, Lai J J, Qiu J L 1998 Acta Phys. Sin. 47 1665 (in Chinese) [陈永洲, 陈清明, 李军, 赖建军, 丘军林 1998 物理学报 47 1665 ]

    [14]

    Wei H L, Liu Z L 1994 Acta Phys. Sin. 43 950 (in Chinese) [魏合林, 刘祖黎 1994 物理学报 43 950]

    [15]

    Wang Y C, Jannitti E, Tondello G 1985 Acta Phys. Sin. 34 1049 (in Chinese) [王永昌, Jannitti E, Tondello G 1985 物理学报 34 1049]

    [16]

    Lu P X, Zhang Z Q, Xu Z Z, Fan P Z, Shen B F, Chen S S 1993 Acta Phys. Sin. 42 273 (in Chinese) [陆培祥, 张正泉, 徐至展, 范品忠, 沈百飞, 陈时胜 1985 物理学报 42 273]

    [17]

    She Y B, Chen Y F, Zhao R W, Zhang X L, Pan G Y 1985 34 10 (in Chinese) [佘永柏, 陈韵芳, 赵汝文, 张秀兰, 潘广炎 1985 物理学报 34 10]

    [18]

    Shi F, Zhang L L, Wang D Z 2009 Chin. Phys. B 18 1177

    [19]

    Lu B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

  • [1]

    Kuraica M, Konjevic N 1992 Phys. Rev. A 46 4429

    [2]

    Mills R, Nansteel M, Ray P 2002 IEEE Trans. Plasma Sci. 30 639

    [3]

    Mills R, Ray P, Dhandapani B 2003 IEEE Trans. Plasma Sci. 31 338

    [4]

    Mills R, Chen X, Ray P 2003 Thermochim. Acta 406 35

    [5]

    Mills R, Ray P, Dhandapani B 2002 J. Mol. Struct. 643 43

    [6]

    Mills R 2000 Int. J. Hydrog. Energ. 25 1171

    [7]

    Akhtar K, Scharer J E 2009 J. Phys. D: Appl. Phys. 42 1

    [8]

    Mao Z Q 2005 Hydrogen Energy—The Green Energy Resource of 21st Century (Beijing: Chemical Industry Press) pp 36–40 (in Chinese) [毛宗强 2005 氢能——21世纪的绿色能源 (北京: 化学工业出版社) 第36-40]

    [9]

    Hong M Y, Ye M F, Sun X 1965 Acta Phys. Sin. 21 1606 (in Chinese) (洪明苑, 集茂福, 孙湘 1965 物理学报 21 1606)

    [10]

    Niu T Y, Cao J X, Liu L 2007 Acta Phys. Sin. 56 2330 (in Chinese) (牛田野, 曹金祥, 刘 磊 2007 物理学报 56 2330)

    [11]

    Chen Z, HeW, Pu Y K 2005 Acta Phys. Sin. 54 2153 (in Chinese) (陈卓, 何威, 蒲以康 2005 物理学报 54 2153)

    [12]

    Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303

    [13]

    Chen Y Z, Chen Q M, Li J, Lai J J, Qiu J L 1998 Acta Phys. Sin. 47 1665 (in Chinese) [陈永洲, 陈清明, 李军, 赖建军, 丘军林 1998 物理学报 47 1665 ]

    [14]

    Wei H L, Liu Z L 1994 Acta Phys. Sin. 43 950 (in Chinese) [魏合林, 刘祖黎 1994 物理学报 43 950]

    [15]

    Wang Y C, Jannitti E, Tondello G 1985 Acta Phys. Sin. 34 1049 (in Chinese) [王永昌, Jannitti E, Tondello G 1985 物理学报 34 1049]

    [16]

    Lu P X, Zhang Z Q, Xu Z Z, Fan P Z, Shen B F, Chen S S 1993 Acta Phys. Sin. 42 273 (in Chinese) [陆培祥, 张正泉, 徐至展, 范品忠, 沈百飞, 陈时胜 1985 物理学报 42 273]

    [17]

    She Y B, Chen Y F, Zhao R W, Zhang X L, Pan G Y 1985 34 10 (in Chinese) [佘永柏, 陈韵芳, 赵汝文, 张秀兰, 潘广炎 1985 物理学报 34 10]

    [18]

    Shi F, Zhang L L, Wang D Z 2009 Chin. Phys. B 18 1177

    [19]

    Lu B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

  • [1] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [2] 郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣. 超声喷流氩氢混合团簇特性研究. 物理学报, 2014, 63(10): 103601. doi: 10.7498/aps.63.103601
    [3] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究. 物理学报, 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [4] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [5] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [6] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [7] 孟 亮, 张 杰, 朱晓东, 温晓辉, 丁 芳. 热丝辅助双偏压氢等离子体制造金刚石锥状表面研究. 物理学报, 2008, 57(4): 2334-2339. doi: 10.7498/aps.57.2334
    [8] 邹晓兵, 王新新, 张贵新, 韩 旻, 罗承沐. 喷气式Z箍缩等离子体辐射软X射线能谱的研究. 物理学报, 2006, 55(3): 1289-1294. doi: 10.7498/aps.55.1289
    [9] 邹晓兵, 王新新, 罗承沐, 韩 旻. 喷气式Z箍缩等离子体发射离子束能谱的研究. 物理学报, 2005, 54(5): 2133-2137. doi: 10.7498/aps.54.2133
    [10] 常加峰, 曾祥华, 周朋霞, 毕桥. 透镜型量子点中类氢杂质基态能的计算. 物理学报, 2004, 53(4): 978-983. doi: 10.7498/aps.53.978
    [11] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [12] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [13] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度. 物理学报, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [14] 李晓苇, 傅广生, 韩理, 张连水, 吕福润, 王金国. SiH4激光等离子体内H谱线的线型研究. 物理学报, 1993, 42(1): 58-65. doi: 10.7498/aps.42.58
    [15] 王晓方, 陈时胜, 徐至展, 李跃林, 钱爱娣. 针孔透射光栅谱仪用于线聚焦激光等离子体研究. 物理学报, 1990, 39(5): 764-769. doi: 10.7498/aps.39.764
    [16] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 物理学报, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
    [17] 佘永柏, 陈韵芳, 赵汝文, 张秀兰, 潘广炎. Al激光等离子体的谱线展宽及线形研究. 物理学报, 1985, 34(1): 10-16. doi: 10.7498/aps.34.10
    [18] 陈林棠, 周同庆. 在等离子体中镁离子谱线MgⅡλ4481?的宽度和位移. 物理学报, 1965, 21(9): 1591-1605. doi: 10.7498/aps.21.1591
    [19] 李宝牛. 金属氢费米能的变分法计算. 物理学报, 1965, 21(12): 2040-2041. doi: 10.7498/aps.21.2040
    [20] 洪明苑, 叶茂福, 孙湘. 感应磁场压缩下氢等离子体中巴耳末系谱线的斯塔克加宽. 物理学报, 1965, 21(9): 1606-1618. doi: 10.7498/aps.21.1606
计量
  • 文章访问数:  4116
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-06
  • 修回日期:  2011-03-14
  • 刊出日期:  2012-01-05

氢氩等离子体中H原子Balmer 谱线超常展宽研究

  • 1. 黑龙江大学电子工程学院, 哈尔滨 150080;
  • 2. 哈尔滨工业大学热能与动力工程系, 哈尔滨 150001;
  • 3. 哈尔滨工业大学电气工程系, 哈尔滨 150001
    基金项目: 国家杰出青年科学基金(批准号: 50925625)、国家自然科学基金(批准号: 11005025)、博士后科学基金(批准号: 20070420857)、黑龙江省博士后科研基金(批准号: LBH-Z07169)和黑龙江省教育厅科学技术研究计划(批准号: 11551379)资助的课题.

摘要: 在新能源的研究中, 氢能成为与太阳能、风能等一样的绿色能源. 分数H原子是在某些特定催化物(如Ar+)的作用下, 基态H原子可以向比基态能级更低的分数主量子数能级跃迁, 同时释放出大量能量. 通过对氢氩等离子体H原子Balmer 谱线超常展宽的规律性进行研究, 探讨这种伴随着大量能量释放的含H等离子体反应的存在性. 研究结果表明: 利用空心阴极放电管证实高能H原子的存在并首次发现超常展宽与氢氩配比的关系符合催化反应的特点; 通过比较研究的方法, 在实验上寻找加强含H等离子体反应的途径, 得到了更加清晰的H原子Balmer 谱线超常展宽(半高展宽达到0. 245 nm).

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回