搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频感应耦合远端氢等离子体源的二维流体模拟

张宇 罗倩 黄高煌 高飞 王友年

引用本文:
Citation:

射频感应耦合远端氢等离子体源的二维流体模拟

张宇, 罗倩, 黄高煌, 高飞, 王友年

Two-dimensional fluid simulation of a radio-frequency inductively coupled remote hydrogen plasma source

ZHANG Yu, LUO Qian, HUANG Gaohuang, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 氢等离子体由于其独特的物理和化学特性,是反应室清洗时的首选气体.为了更好地理解氢等离子体中的输运和扩散机理,本文通过COMSOL仿真软件构建了二维流体模型,系统地研究了在不同放电参数和几何参数下射频感应耦合远端氢等离子体源的特性.结果发现,输入功率的影响主要体现在电子密度上而非电子温度.这种现象可能是由于稳态放电中电离速率和损失速率之间的平衡机制造成的.气压对驱动区和空间后辉光区中的等离子体有着相反的影响。随着气压的升高,驱动区电子密度逐渐增加,但空间后辉光区电子密度逐渐减小。这是可能是由于随着气压的逐渐增加,非局域电子动理学向局域转变导致的.增加输入功率可以有效提高氢自由基密度和扩散通量,这表明高功率有利于氢自由基向空间后辉光区的输运.提高工作气压也可以产生相同的效果,但会降低空间后辉光区氢自由基密度.此外,在固定放电参数下,适当增加几何参数有利于在后辉光区产生较高密度且较为均匀的氢自由基.
    Due to its unique physical and chemical properties, hydrogen plasma is the preferred gas for cleaning reaction chambers. For better understanding of the transport and diffusion mechanism in hydrogen plasma, this paper presents a two-dimensional fluid model by COMSOL simulation software, and systematically investigates the characteristics of radio-frequency inductively coupled remote hydrogen plasma sources under varying discharge and geometric parameters. The results show that input power primarily affects electron density rather than electron temperature. This phenomenon may be due to the balancing mechanism between the ionisation rate and the loss rate in steady state discharges. The pressure has the opposite effect on the plasma in the driven and spatial afterglow regions. As the pressure rises, the electron density in the driven region increases gradually, while the electron density in the spatial afterglow region decreases gradually. This may be due to the shift from non-local to local electron kinetics as the pressure rises. Increasing input power effectively enhances hydrogen radical density and diffusion flux, suggesting that high power facilitates the transport of hydrogen radicals into the spatial afterglow region. However, elevating operating pressure has a similar effect while reducing hydrogen radical density in the spatial afterglow region. Furthermore, under fixed discharge conditions, increasing geometric parameters appropriately promotes the generation of higher and more uniform hydrogen radical densities within the afterglow region.
  • [1]

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如, 高飞, 王友年 2021 物理学报 70 095206]

    [2]

    Zhao M L, Xing S Y, Tang W, Zhang Y R, Gao F, Wang Y N 2024 Acta Phys. Sin. 73 215201 (in Chinese) [赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年 73 215201]

    [3]

    Yamada Y, Yamada T, Tasaka S and Inagaki N 1996 Macromolecules 29 4331

    [4]

    Lucovsky G, Richard P D, Tsu D V, Lin S Y and Markunas R J 1986 J. Vac. Sci. Technol. A 4 681

    [5]

    Guo Y N, Ong T M B and Xu S Y 2019 Appl. Surf. Sci. 487 146

    [6]

    Pae J Y, Medwal R, Vas J V, Matham M V and Rawat R S 2019 J. Vac. Sci. Technol. B 37 041201

    [7]

    Kim B, Lee N, Lee J, Park T, Park H, Kim Y, Jin C, Lee D, Kim H and Jeon H 2021 Appl. Surf. Sci. 541 148482

    [8]

    Claflin B, Grzybowski G J, Ware M E, Zollner S and Kiefer A M 2020 Front. Mater. 7 44

    [9]

    Erwine P, Camille P E, Laurène Y, Gaspard T and Sylvain D 2019 J. Vac. Sci. Technol. A 37 040601

    [10]

    Volynets V, Barsukov Y, Kim G, Jung J E, Nam S K, Han K, Huang S and Kushner M J 2020 J. Vac. Sci. Technol. A 38 023007

    [11]

    Huang S, Volynets V, Hamilton J R, Nam S K, Song I C, Lu S Q, Tennyson J and Kushner M J 2018 J. Vac. Sci. Technol. A 36 021305

    [12]

    Yang K C, Shin Y J, Tak H W, Lee W, Lee S B and Yeom G Y 2019 Vacuum 168 108802

    [13]

    Wang P Y, Xing S Y, Han D M, Zhang Y R, Li Y, Zhou C, Gao F and Wang Y N 2024 Plasma Sci. Technol. 26 125401

    [14]

    Li H, Liu Y, Zhang Y R, Gao F and Wang Y N 2017 J. Appl. Phys. 121 233302

    [15]

    Tsankov T, Kiss’ovski Z, Djermanova N and Kolev S 2006 Plasma Process. Polym. 3 151

    [16]

    Gangoli S P, Johnson A D, Fridman A A, Pearce R V, Gutsol A F and Dolgopolsky A 2007 J. Phys. D: Appl. Phys. 40 5140

    [17]

    Zhang A X, Lee M Y, Lee H W, Moon H J and Chung C W 2021 Plasma Sources Sci. Technol. 30 025009

    [18]

    Van Herpen M M J W, Klunder D J W, Soer W A, Moors R and Banine V 2010 Chem. Phys. Lett. 484 197

    [19]

    Pachecka M, Sturm J M, van de Kruijs R W E, Lee C J and Bijkerk F 2016 AIP Adv. 6 075222

    [20]

    Braginsky O V, Kovalev A S, Lopaev D V, Malykhin E M, Rakhimova T V, Rakhimov A T, Vasilieva A N, Zyryanov S M, Koshelev K N, Krivtsun V M, van Kaampen M and Glushkov D 2012 J. Appl. Phys. 111 093304

    [21]

    Maffini A, Uccello A, Dellasega D and Passoni M 2016 Nucl. Fusion 56 086008

    [22]

    Sporre J, Lofgren R E, Ruzic D N et al. 2011 Proc. SPIE Extreme Ultraviolet (EUV) Lithography II 796929

    [23]

    Wang S S, Ye Z B, Wu A D, Gao T, Wei J J and Gou F J 2025 J. Alloy. Compd. 1030 180912

    [24]

    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)

    [25]

    Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J and Wang Y N 2023 Plasma Sci. Technol. 25 105601

    [26]

    Lishev S T et al. 2011 J. Plasma Phys. 77 469

    [27]

    Lishev S et al. 2018 Plasma Sources Sci. Technol. 27 125008

    [28]

    Smirnov B M 2015 Theory of Gas Discharge Plasma (Cham: Springer International Publishing)

    [29]

    Zhang Y, Yang W, Lyu X Y, Gao F and Wang Y N 2025 J. Appl. Phys. 138 023301.

    [30]

    Xing S Y, Gao F, Zhang Y R, Zhao M, Lei G J and Wang Y N 2024 Nucl. Fusion 64 056015

    [31]

    Petrov G M and Giuliani J L 2001 J. Appl. Phys. 90 619

    [32]

    Janev R K, Reiter D and Samm U 2003 Collision Processes in Low-Temperature Hydrogen Plasma (Jülich: Forschungszentrum Zentralbibliothek)

    [33]

    Yoon J S et al. 2008 J. Phys. Chem. Ref. Data 37 913

    [34]

    Janev R K et al. 1989 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Berlin: Springer)

    [35]

    Hjartarson A T, Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008

    [36]

    Celiberto R et al. 2001 At. Data Nucl. Data Tables 77 161

    [37]

    Celiberto R, Capitelli M and Laricchiuta A 2002 Phys. Scr. T96 32

    [38]

    Bowers M T, Elleman D D and King J 1969 J. Chem. Phys. 50 4787

    [39]

    Matveyev A A and Silakov V P 1995 Plasma Sources Sci. Technol. 4 606

    [40]

    Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368

    [41]

    Booth J P and Sadeghi N 1991 J. Appl. Phys. 70 611

    [42]

    Gorse C et al 1987 Chem. Phys. 117 177

    [43]

    Averkin S N, Gatsonis N A and Olson L 2015 IEEE Trans. Plasma Sci. 43 1926

    [44]

    Hiskes J R and Karo A M 1989 Appl. Phys. Lett. 54 508

    [45]

    Boeuf J P et al 2011 Plasma Sources Sci. Technol. 20 015002

  • [1] 安彦霖, 赵明亮, 罗倩, 高飞, 王友年. 基于多种诊断方法的氮与氩氮混合等离子体中中性气体温度研究. 物理学报, doi: 10.7498/aps.75.20251240
    [2] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟. 物理学报, doi: 10.7498/aps.73.20240436
    [3] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, doi: 10.7498/aps.73.20231369
    [4] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, doi: 10.7498/aps.73.20231056
    [5] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究. 物理学报, doi: 10.7498/aps.73.20240952
    [6] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [7] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [8] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, doi: 10.7498/aps.65.205201
    [9] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究. 物理学报, doi: 10.7498/aps.61.165203
    [10] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, doi: 10.7498/aps.57.1796
    [11] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究. 物理学报, doi: 10.7498/aps.57.5123
    [12] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, doi: 10.7498/aps.56.977
    [13] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, doi: 10.7498/aps.55.3494
    [14] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, doi: 10.7498/aps.55.5311
    [15] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, doi: 10.7498/aps.54.1653
    [16] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性. 物理学报, doi: 10.7498/aps.53.3394
    [17] 傅广生, 王金国, 李晓苇, 韩理, 吕福润. SiH4激光等离子体内自由基反应动力学研究. 物理学报, doi: 10.7498/aps.40.2024
    [18] 庆承瑞, 周玉美. 环形非圆截面等离子体自由界面的磁流体平衡方程解. 物理学报, doi: 10.7498/aps.29.106
    [19] 王德焴. 自由界面等离子体平衡的变分原理. 物理学报, doi: 10.7498/aps.29.233
    [20] 洪明苑, 叶茂福, 孙湘. 感应磁场压缩下氢等离子体中巴耳末系谱线的斯塔克加宽. 物理学报, doi: 10.7498/aps.21.1606
计量
  • 文章访问数:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-24

/

返回文章
返回