搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多种诊断方法的氮与氩氮混合等离子体中中性气体温度研究

安彦霖 赵明亮 罗倩 高飞 王友年

引用本文:
Citation:

基于多种诊断方法的氮与氩氮混合等离子体中中性气体温度研究

安彦霖, 赵明亮, 罗倩, 高飞, 王友年

A Study on Neutral Gas Temperature in N₂ and Ar-N₂ Mixed Plasmas Using Multiple Diagnostic Techniques

An Yan-lin, Zhao Ming-Liang, Luo Qian, Gao Fei, Wang You-Nian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 低温感应耦合射频等离子体作为半导体制造中的关键等离子体源,其中性气体温度通过调控化学反应动力学、活性自由基分布以及等离子体-表面相互作用,对高质量芯片制造工艺具有重要影响. 本工作通过光谱法、布拉格光栅和光纤传感测温等三种测温手段,系统研究了氮气以及氮氩混合等离子体在不同射频功率、气体压力和气体组分条件下的中性气体温度(Tg)的变化规律. 另外,还结合 Langmuir 探针测量的电子密度、电子温度、电子能量概率函数以及整体模型模拟,分析了中性气体加热的物理机制. 结果表明,当射频功率增大时,耦合到等离子体的能量增多,电离反应增强,电子-中性粒子之间的碰撞过程和能量传递增多,使 Tg 呈单调递增趋势. 而当气压升高初期,电子密度和背景气体密度增加共同提升了加热效率,Tg 快速上升,但在气压超过 3 Pa后,电子平均自由程缩短,电子密度下降,而背景气体密度持续增加,因而导致 Tg 增加变缓. 在氮/氩混合体系放电中,氩气比例增加显著提高了 Tg 的上升速率,这是由于随着氩气比例增加,高能电子比例和电子密度上升,增强了电离和中性气体加热,同时氩亚稳态原子通过 Penning 过程提高了氮激发态粒子密度,并促使氮分子向高能级激发,进一步加热气体. 此外,研究发现纯氮等离子体的径向温度分布在轴向高度增加时呈现由抛物线形向马鞍形的转变,这是因为离线圈越近,受到电磁场的影响电子碰撞激发反应越强.研究还发现了径向边缘处的Tg随气压的升高几乎不发生变化,这是由于当气压不断升高时,线圈下方的电子很难运动到径向边缘处与中性粒子发生碰撞,从而限制了边缘中性粒子的加热.
    Low-temperature inductively coupled radio-frequency plasma is a key plasma source in semiconductor fabrication, wherein the neutral gas temperature (Tg) is one of the critical parameters influencing chemical reactions and plasma characteristics. Precise control of Tg significantly influences processes such as thin-film deposition and reactive ion etching, with its synergistic interaction with plasma parameters (ne, Te) often determining process outcomes. Consequently, a thorough understanding of the evolution of Tg and its correlation with discharge parameters has become a critical issue for optimizing semiconductor manufacturing processes. To achieve more accurate measurements of neutral gas temperature, this work employs three temperature measurement techniques: spectroscopy, Bragg grating, and fiber optic sensing. These methods are used to systematically investigate the variation patterns of neutral gas temperature (Tg) in nitrogen and nitrogen-argon mixed plasmas under different radio-frequency power, gas pressure, and gas composition conditions. To elucidate the gas heating mechanism, this work combines Langmuir probe measurements of electron density, electron temperature, electron energy probability distribution, with a global model simulations. The results show that when the RF power increases, the energy coupled to the plasma increases, the ionization reaction is enhanced, and the collision process and energy transfer between electrons and neutral particles increase, resulting in a monotonically increasing trend of Tg. When gas pressure increases initially, electron density and background gas density jointly rise, enhancing heating efficiency and driving rapid Tg growth. However, beyond 3 Pa, electron mean free path shortens and electron density declines. In contrast, background gas density continues increasing, leading to slower Tg growth.. In nitrogen/argon mixed system discharges, increasing the argon proportion significantly enhances the rate of Tg increase. This occurs because a higher argon ratio elevates the proportion of high-energy electrons and electron density, thereby strengthening ionization and neutral gas heating. Concurrently, argon metastable atoms enhance the density of excited nitrogen particles via the Penning process, promoting nitrogen molecular excitation to higher energy levels and further heating the gas. Additionally, we observe that the radial temperature distribution in pure nitrogen plasma shifts from parabolic to saddle-type with increased axial height, due to intensified electron collision excitation near the coil under electromagnetic field effects. The study also found that the glass transition temperature at the radial edge remained virtually unchanged with increasing atmospheric pressure. This is because, as pressure continues to rise, electrons beneath the coil struggle to migrate to the radial edge to collide with neutral particles, thereby limiting the heating of edge neutral particles.
  • [1]

    E. Iliopoulos, A. Adikimenakis, E. Dimakis, K. Tsagaraki, G. Konstantinidis, A. Georgakilas 2005 J. Cryst. Growth 278 426

    [2]

    J. Osaka, M. Senthil Kumar, H. Toyoda, T. Ishijima, H. Sugai, T. Mizutani 2007 Appl. Phys. Lett. 90 172114

    [3]

    Kim K Y, Lee H C, Chung C W 2022 Plasma Sources Sci. Technol. 31 105007

    [4]

    Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y 2003 Thin Solid Films 435 259

    [5]

    Agarwal S, Hoex B, van de Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918

    [6]

    Gao F, Mao M, Ding Z F, Wang Y N 2008 Acta Phys. Sin. 57 5123 (in Chinese) [高飞, 毛明, 丁振峰, 王友年 2008 物理学报 57 5123]

    [7]

    Hebner G A 1996 J. Appl. Phys. 80 2624

    [8]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691

    [9]

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese)[杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]

    [10]

    Pan Z H, Chen X H, Wang C, Xia W D 2021 Acta Phys. Sin. 70 085201 (in Chinese) [潘子峰, 陈仙辉, 王斌, 夏维东 2021 物理学报 70 085201]

    [11]

    Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718

    [12]

    Wang Y J, Huang J W, Zhang Q Z, Zhang Y R, Gao F, Wang Y N 2021 Chin. Phys. B 30 095205 (in Chinese)

    [13]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467

    [14]

    Ostrikov K N, Denysenko I B, Tsakadze E L, Xu S, Storer R G 2002 J. Appl. Phys. 92 4935

    [15]

    Hash D B, Bose D, Rao M V V S, Cruden B A, Meyyappan M, Sharma S P 2001 J. Appl. Phys. 90 2148

    [16]

    Hebner G A, Miller P A 2000 J. Appl. Phys. 87 8304

    [17]

    Hebner G A 2001 J. Appl. Phys. 89 900

    [18]

    Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718

    [19]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol.13 691.

    [20]

    Malyshev M V, Donnelly V M, Downey S W, Colonell J I, Layadi N 2000 J. Vac. Sci. Technol. A 18 849

    [21]

    Kiehlbauch M W, Graves D B 2001 J. Appl. Phys. 89 2047

    [22]

    Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 Appl. Phys. Lett. 81 990

    [23]

    Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 J. Appl. Phys. 91 8955

    [24]

    Schabel M J, Donnelly V M, Kornblit A, Tai W W 2002 J. Vac. Sci. Technol. A 20 555

    [25]

    Palmero A, Cotrino J, Barranco A, Gonzalez-Elipe A R 2002 Phys. Plasmas 9 358

    [26]

    Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022

    [27]

    Han J, Park W, Kim J, Lim K H, Lee G H, In S, Park J, Oh S J, Nam S K, Sung D Y, Moon S Y 2023 Spectrochim. Acta A 302 123389

    [28]

    Du P C, Zhou F J, Zhao K 2022 Appl. Phys. 132 043302

    [29]

    Zhang L 2021 Ph.D. Dissertation (Dalian: Dalian University of Technology)

    [30]

    Lv T 2023 Ph.D. Dissertation (Dalian: Dalian University of Technology)

    [31]

    Tong L, Zhao M L, Zhang Y R 2024 Acta Phys. Sin. 73 04215 (in Chinese)

    [32]

    Wen D Q 2018 Ph.D. Dissertation (Dalian: Dalian University of Technology)

    [33]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100

    [34]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399

    [35]

    Bakowski B, Hancock G, Peverall R, Ritchie G A D, Thornton L J 2004 J. Phys. D: Appl. Phys. 37 2064

    [36]

    Tuszewski M 2006 J. Appl. Phys. 100 05330

    [37]

    Shimada M, Tynan G R, Cattolica R 2006 J. Vac. Sci. Technol. A 24 1878

    [38]

    Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022

    [39]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691

    [40]

    Biloiu C, Sun X, Harvey Z, Scime E 2007 J. Appl. Phys. 101 073303

    [41]

    Linss V, Kupfer H, Peter S, Richter F 2005 Surf. Coat. Technol. 200 1696

    [42]

    Thorsteinsson E G, Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001

    [43]

    Gudmundsson J T 2005 Report No. RH-09-2005 (University of Iceland)

    [44]

    Sode M, Jacob W, Schwarz-Selinger T, Kersten H 2015 J. Appl. Phys. 117 083303

    [45]

    Levaton J, Amorim J, Souza A R, Franco D, Ricard A 2002 J. Phys. D: Appl. Phys. 35 689

    [46]

    Loureiro J 1997 J. Phys. D: Appl. Phys. 30 2320

    [47]

    Guerra V, Loureiro J M A H 1997 Plasma Sources Sci. Technol. 6 361

    [48]

    Pejovic M M, Zivanovic E N, Pejovic M M 2004 J. Phys. D: Appl. Phys. 37 200

    [49]

    Piper L G 1987 J. Chem. Phys. 87 1625

    [50]

    Gordiets B F, Ferreira C M, Guerra V L, Loureiro J M A H, Nahorny J, Pagnon D, Touzeau M, Vialle M 1995 IEEE Trans. Plasma Sci. 23 750

    [51]

    Piper L G 1989 J. Chem. Phys. 91, 864

    [52]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207

    [53]

    Kim K Y, Kim J H, Chung C W, Lee H C 2022 Plasma Sources Sci. Technol. 31 105007

    [54]

    Song M A, Lee Y W, Chung T H 2011 Phys. Plasmas 18 023504

    [55]

    Luo Q, Lv T, Wang P Y, Zhou D P, Gao F, Wang Y N 2025 J. Vac. Sci. Technol. A 43 043006

  • [1] 袁泓, 尹相辉, 吕波, 金仡飞, BaeCheonho, 张洪明, 符佳, 刘海庆, 赵海林, 臧庆, 王福地, 向东. EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究. 物理学报, doi: 10.7498/aps.74.20241462
    [2] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统. 物理学报, doi: 10.7498/aps.71.20220611
    [3] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, doi: 10.7498/aps.71.20220421
    [4] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [5] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [6] 曹玉珍, 马金英, 刘琨, 黄翔东, 江俊峰, 王涛, 薛萌, 刘铁根. 基于全相位滤波技术的光纤表面等离子体共振传感解调算法. 物理学报, doi: 10.7498/aps.66.074202
    [7] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, doi: 10.7498/aps.64.064213
    [8] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, doi: 10.7498/aps.64.224221
    [9] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, doi: 10.7498/aps.62.124207
    [10] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, doi: 10.7498/aps.62.115202
    [11] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, doi: 10.7498/aps.61.015204
    [12] 孙 恺, 辛 煜, 黄晓江, 袁强华, 宁兆元. 60MHz电容耦合等离子体中电子能量分布函数特性研究. 物理学报, doi: 10.7498/aps.57.6465
    [13] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究. 物理学报, doi: 10.7498/aps.57.5123
    [14] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, doi: 10.7498/aps.57.1796
    [15] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, doi: 10.7498/aps.56.977
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, doi: 10.7498/aps.55.5311
    [17] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, doi: 10.7498/aps.54.1653
    [18] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性. 物理学报, doi: 10.7498/aps.53.3394
    [19] 龚学余, 凌 球, 石秉仁, 龙永兴. 在Bohm模式下氘氚燃烧的等离子体温度分布. 物理学报, doi: 10.7498/aps.48.2266
    [20] 程成, 孙威. 溴化亚铜激光气体温度的径向分布与时间变化. 物理学报, doi: 10.7498/aps.42.1779
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-15

/

返回文章
返回