-
高能粒子(Energetic Particles, EP)驱动的不稳定性及其调控规律,是受控核聚变研究中亟需解决的关键科学问题之一。本文以京都大学Heliotron J装置为实验平台,系统研究了电子回旋加热(Electron Cyclotron Heating, ECH)对EP驱动不稳定性的影响。研究采用实验诊断与数值模拟相结合的方式,揭示了典型等离子体参数在不稳定性激发与抑制中的作用机制,以及磁场位型和等离子体参数耦合作用在ECH加热系统影响不稳定性中发挥的作用。文章通过FAR3D程序分析了随着ECH功率的变化,高能离子比压、热比压、电子温度以及电阻率对模态驱动和阻尼过程的影响规律。模拟结果与实验观测在模数和径向结构上高度一致,证实了快粒子比压对增长率的敏感性,以及电子温度对朗道阻尼和连续谱阻尼的增强效应。模拟结果表明有限Larmor半径(FLR)效应和高能离子减速时间的改变同样在模态演化中发挥重要作用。研究结果不仅为理解不同磁场位型下ECH加热系统对不稳定性的差异化作用提供了物理依据,也为未来螺旋器/仿星器类装置中优化加热方式、提升等离子体运行稳定性提供了重要参考。A large number of energetic particles (EPs) are generated during the heating process to obtain the high temperature plasma for fusion research. These EPs can resonantly excite various magnetohydrodynamic (MHD) instabilities, including the Alfvén eigenmodes (AEs) and the energetic particle modes (EPMs). The excitation of such MHD instabilities can lead to significant EP losses, which not only degrade the plasma confinement and heating efficiency, but also result in excessive heat loads and damage to plasma-facing components. In this paper, the influence of key plasma parameters on the excitation and damping effect of EP-driven MHD instabilities in Heliotron J device are investigated for better understanding of the excitation and transport mechanisms of EPs driven MHD in specific device, which is meaningful for achieving stable plasma operation in future fusion devices with different heating methods. In this study, the typical EPs driven MHD instabilities are observed using various diagnostic methods, such as magnetic probes, beam emission spectroscopy (BES), electron cyclotron resonance (ECE) radiometers, and interferometers. Combined with the simulation results from STELLGAP and FAR3D programs, the modulus, radial distribution, and spectral characteristics of different instabilities were deeply analyzed, revealing the evolutions of AEs and EPMs in the Heliotron J device under typical heating conditions. This paper quantitatively reveals the driving and suppressing mechanisms of EP-driven instabilities by the electron density (ne), the electron temperature (Te), and the energetic/thermal particle specific pressure (βf/βth) in Heliotron J device, under different electron cyclotron resonance heating (ECH) and neutral beam injection (NBI) conditions. The results show that different characteristics are obtained under different magnetic field geometry conditions. It is indicated that an increase in electron density can reduce the instability intensity by about 40%-60%, and an increase in the specific pressure of energetic particles can double the modal growth rate, while an increase in the specific pressure of hot particles has a 20%-50% inhibitory effect on the growth rate of the low order modes. These findings are useful for understanding the different effects of ECH and NBI on the EPs driven MHD instabilities, and they are also helpful for achieving stable operation by adjusting the heating system parameters in the stellarator like devices in the future.
-
[1] Sun Y W, Qiu Z Y, Wan B N 2024 Acta Physica Sinica 73 175202 (in Chinese)[孙有文 仇志勇 万宝年 2024 物理学报 73 175202]
[2] Huang J, Li M S, Qin C, Wang X Q, 2022 Acta Physica Sinica 71 185202 (in Chinese)[黄捷 李沫杉 覃程 王先驱 2022 物理学报 71 185202]
[3] Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Physica Sinica 72 215205 (in Chinese)[苏祥 王先驱 符添 许宇鸿 2023 物理学报 72 215205]
[4] Luo Y Q, Wang L, Yang S Z, Chen Y P, Qi X Z, Li Z L, Wang W S, Li W L, Zhao H, Tang J H, Tan F C 1990 Acta Physica Sinica 39 399 (in Chinese)[罗耀全 王龙 杨思泽 陈雁萍 戚霞枝 李赞良 王文书 李文莱 赵华 唐继辉 谭富传 1990 物理学报 39 399]
[5] Shi B R 1999 Principles and Practice of Magnetic Confinement Fusion (Beijing: Atomic Energy Press) pp192-197 (in Chinese)[石秉仁 1999 磁约束聚变原理与实践(北京: 原子能出版社)pp192-197]
[6] Zhang W, Zhang X J, Liu L N, Zhu G H, Yang H, Zhang H P, Zheng Y F, He K Y, Huang J 2023 Acta Physica Sinica 72 215201 (in Chinese)[张伟 张新军 刘鲁南 朱光辉 杨桦 张华朋 郑艺峰 何开洋 黄娟 2023 物理学报 72 215201]
[7] Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A 2011 Plasma Physics and Controlled Fusion 53 024008
[8] Breizman B N, Sharapov S E 2011 Plasma Physics and Controlled Fusion 53 054001
[9] Yamamoto S, Nagasaki K, Kobayashi S, Nagaoka K, Cappa A, Okada H, Minami T, Kado S, Ohshima S, Konoshima S, Nakamura Y, Ishizawa A, Weir G M, Kenmochi N, Ohtani Y, Lu X, Tawada Y, Kokubu D, Mizuuchi T 2017 Nuclear Fusion 57 126065
[10] Yamamoto S, Nagasaki K, Nagaoka K ,Watanabe K Y, Spong D A, Garcia L, Cappa A 2020 Nuclear Fusion 60 066018
[11] Nagaoka K, Ido T, Ascasibar E, Estrada T, Yamamoto S, Melnikov A V, Cappa A, Hidalgo C, Pedrosa M A, van Milligen B P, Pastor I, Liniers M, Ochando M A, Shimizu A, Eliseev L G, Ohshima S, Mukai K, Takeiri Y 2013 Nuclear Fusion 53 072004
[12] Spong D A, Sanchez R, Weller A 2003 Physics of Plasmas 10 3217
[13] Jiang X H, Li S, Liu Y, Wang S, Jia F, Wang T, Han L, Zhang X 2024 Proceedings of the AAAI Conference on Artificial Intelligence 38 2561
[14] Charlton L A, Holmes J A, Hicks H R, Lynch V E, Carreras B A 1986 Journal of Computational Physics 63 107
[15] Spong D A 2013 Nuclear Fusion 53 053008
[16] Taimourzadeh S Spong DA Todo Y García L Sánchez E Carreras B A Izacard O 2019 Physics of Plasmas 26 122507
[17] Varela J, Spong D, Garcia L, Ghai Y, Ortiz J 2024 Frontiers in Physics 12 1422411
[18] Weller A Spong DA Jaenicke R Lazaros A Penningsfeld FP Sattler S 1994 Physical Review Letters 72 1220
[19] Eliseev L G, Melnikov A V, Ascasíbar E, Cappa A, Drabinskiy M, Hidalgo C, Khabanov P O, Kharchev N K, Kozachek A S, Liniers M, Lysenko S E, Ochando M de Pablos J L, Pastor I, Sharapov S E, Spong D A, Breizman B N, Varela J 2021 Physics of Plasmas 28 072510
[20] Mizuuchi T, Nakasuga M, Sano F, Nakamura Y, Kondo K, Okada H, Nagasaki K, Besshou S, Wakatani M, Obiki T, 1999 Proceedings of the 12th International Stellarator Workshop Madison, USA, September 6-10, 1999 p192
[21] Obiki T, Mizuuchi T, Nagasaki K, Okada H, Besshou S, Sano F, Hanatani K, Liu Y, Hamada T, Manabe Y, Shidara H, Ang W, Liu Y, Ikeda Y, Kawazome Y, Kobayashi T, Takamiya T, Takeda M, Ijiri Y, Senju T, Yaguchi K, Sakamoto K, Toshi K 2001 Nuclear Fusion 41 833
[22] Kobayashi S, Nagaoka K, Yamamoto S, Mizuuchi T, Nagasaki K, Okada H, Minami T, Murakami S, Lee H, Suzuki Y, Nakamura Y, Takeiri Y, Yokoyama M, Hanatani K, Hosaka K, Konoshima S, Ohshima S, Toushi K, Sano F 2010 Contributions to Plasma Physics 50 534
[23] Zhong Y, Nagasaki K, Wang Z, Kobayashi S, Inagaki S, Minami T, Kado S, Ohshima S, Kin F, Wang C, Nakamura Y, Konoshima S, Mizuuchi T, Okada H, Marushchenko N, Chen J 2024 Plasma and Fusion Research 19 1202008
[24] Nagasaki K, Yamamoto S, Kobayashi S, Sakamoto K, Nagae Y, Sugimoto Y, Nakamura Y, Weir G M, Marushchenko N, Mizuuchi T, Okada H, Minami T, Masuda K, Ohshima S, Konoshima S, Shi N, Nakamura Y, Lee H Y, Zang L, Arai S, Watada H, Fukushima H, Hashimoto K, Kenmochi N, Motojima G, Yoshimura Y, Mukai K, Volpe F, Estrada T, Sano F 2013 Nuclear Fusion 53 113041
[25] Heidbrink, W. W. 2008 particles. Physics of Plasmas, 15(5), 055501.
计量
- 文章访问数: 31
- PDF下载量: 0
- 被引次数: 0