搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFQS-T准环对称仿星器高频磁探针阵列诊断的研制及初步应用

兰恒 李嘉栋 曹宇豪 沈军峰 李嘉诚 许宇鸿 孙腾飞 何梦圆 冯宇轩 吴丹妮 程钧 刘海峰 SHIMIZU Akihiro 王先驱 宣伟民 张美勇 邹千 罗珺 杨权 张欣 刘海 黄捷 胡军 邵俊仁 李伟 栗钰彩 周红 王捷 苏祥 唐昌建

引用本文:
Citation:

CFQS-T准环对称仿星器高频磁探针阵列诊断的研制及初步应用

兰恒, 李嘉栋, 曹宇豪, 沈军峰, 李嘉诚, 许宇鸿, 孙腾飞, 何梦圆, 冯宇轩, 吴丹妮, 程钧, 刘海峰, SHIMIZU Akihiro, 王先驱, 宣伟民, 张美勇, 邹千, 罗珺, 杨权, 张欣, 刘海, 黄捷, 胡军, 邵俊仁, 李伟, 栗钰彩, 周红, 王捷, 苏祥, 唐昌建

Development and preliminary application of the high-frequency magnetic probe array on the quasi-axisymmetric stellarator CFQS-T

LAN Heng, LI Jiadong, CAO Yuhao, SHEN Junfeng, LI Jiacheng, XU Yuhong, SUN Tengfei, HE Mengyuan, FENG Yuxuan, WU Danni, CHENG Jun, LIU Haifeng, SHIMIZU Akihiro, WANG Xianqu, XUAN Weimin, ZHANG Meiyong, ZOU Qian, LUO Jun, YANG Quan, ZHANG Xin, LIU Hai, HUANG Jie, HU Jun, SHAO Junren, LI Wei, LI Yucai, ZHOU Hong, WANG Jie, SU Xiang, TANG Cangjian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 对于磁约束聚变实验装置,磁探针诊断是一种基础又非常重要的研究等离子体磁涨落的诊断。中国首台准环对称仿星器(Chinese FirstQuasi-axisymmetric Stellarator, CFQS)实验运行的第一阶段(也称为CFQS-T 准环对称仿星器)的物理实验研究需要磁探针诊断提供相应的等离子体磁涨落测量。本文报道了在 CFQS-T 准环对称仿星器上新研制的高频磁探针阵列诊断,它由 8 个相同的三维高频磁探针组成,每个高频磁探针可以同时测量极向、径向及环向三个方向的磁涨落信号;优化的空间布置使得高频磁探针阵列可以用于研究磁涨落的极向和环向传播特征,其最高环向模数分辨相比于低频磁探针阵列的 n=±6 提高至 n=±16。本文将简要介绍高频磁探针阵列诊断的机械系统、信号传输线、采集与控制系统等主要子系统及在研制各系统过程中克服的挑战,以及对高频磁探针的有效面积标定和原位频率响应标定的研究结果,CFQS-T 高频磁探针每个测量方向的共振频率均大于400 kHz, 满足测量50-300 kHz高频磁涨落的设计需求。初步的应用研究显示高频磁探针阵列诊断可用于低频和高频磁涨落的时频谱、极向和环向传播分析,值得注意的是本文首次报道了对 CFQS-T 上高频磁涨落的测量分析结果。高频磁探针阵列诊断的成功研制将有助于 CFQS-T 深入开展等离子体电磁涨落的相关研究。
    For magnetic confined fusion devices, magnetic probe diagnostic is a basic but very important diagnostic for studying plasma magnetic fluctuations. The first experimental phase of the Chinese First Quasi-axisymmetric Stellarator (CFQS), which is also called CFQS-T, needs magnetic probe diagnostics to provide plasma magnetic fluctuation measurements, especially the high-frequency (of frequency 50≤f≤300 kHz) magnetic fluctuation measurements. This article reports the newly developed high-frequency magnetic probe array (HFMPA) diagnostic on the CFQS-T. It consists of 8 identical three-dimensional high-frequency magnetic probes, each of which can simultaneously measure magnetic fluctuations in the poloidal, radial and toroidal directions; the HFMPA magnetic probes are carefully mounted on the inner vacuum vessel wall of the CFQS-T, and their positions are precisely measured by the laser tracker system; and the HFMPA can be used to study the poloidal and toroidal propagation characteristics of magnetic fluctuations due to the optimized spatial arrangement, and its maximum toroidal mode number resolution is improved to n=±16 compared with n=±6 of the low-frequency magnetic probe array (LFMPA, used for the f≤50 kHz magnetic fluctuation measurements). The main subsystems of the HFMPA diagnostic, such as the mechanical system, signal transmission lines, acquisition and control systems, and the challenges overcome in the development of each subsystem, will be briefly introduced in this article. The effective areas of the HFMPA magnetic probes are calibrated by the relative calibration method, which shows that they are around 0.02 m2. The in-situ frequency response of the HFMPA magnetic probes is calibrated with a LCR digital bridge with a maximum working frequency of 10 MHz. The resonance frequency of the HFMPA magnetic probe in each measurement direction is greater than 400 kHz, which meets the design requirements for measuring 50-300 kHz high-frequency magnetic fluctuations in CFQS-T. Preliminary applications of the HFMPA diagnostic in studying the low-frequency (1.5-16.0 kHz) magnetic fluctuations and high-frequency (65-105 kHz) magnetic fluctuations in CFQS-T are briefly introduced, which shows that the HFMPA diagnostic works well for providing the spectrogram, poloidal, and toroidal propagation information of low-frequency and high-frequency magnetic fluctuations. It is worth noting that this article reports the measurement and analysis results of high-frequency (65-105 kHz) magnetic fluctuations in CFQS-T for the first time. The successful development of the HFMPA diagnostic will help to carry out in-depth research on plasma magnetic fluctuations in CFQS-T stellarator.
  • [1]

    Gates D A, Anderson D, Anderson S, Zarnstorff M, Spong D A, Weitzner H, Neilson G H, Ruzic D, Andruczyk D, Harris J H, Mynick H, Hegna C C, Schmitz O, Talmadge J N, Curreli D, Maurer D, Boozer A H, Knowlton S, Allain J P, Ennis D, Wurden G, Reiman A, Lore J D, Landreman M, Freidberg J P, Hudson S R, Porkolab M, Demers D, Terry J, Edlund E, Lazerson S A, Pablant N, Fonck R, Volpe F, Canik J, Granetz R, Ware A, Hanson J D, Kumar S, Deng C, Likin K, Cerfon A, Ram A, Hassam A, Prager S, Paz-Soldan C, Pueschel M J, Joseph I, Glasser A H 2018 Journal of Fusion Energy 37 51

    [2]

    Yoshida M, McDermott R M, Angioni C, Camenen Y, Citrin J, Jakubowski M, Hughes J W, Idomura Y, Mantica P, Mariani A, Mordijck S, Paul E J, Tala T, Verdoolaege G, Zocco A, Casson F J, Dif-Pradalier G, Duval B, Grierson B A, Kaye S M, Manas P, Maslov M, Odstrcil T, Rice J E, Schmitz L, Sciortino F, Solano E R, Staebler G, Valovič M, Wolfrum E, Snipes J A 2025 Nucl Fusion 65 033001

    [3]

    Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A, Todo Y 2011 Plasma Physics and Controlled Fusion 53 024008

    [4]

    Chen L, Zonca F 2016 Reviews of Modern Physics 88 015008

    [5]

    Rahbarnia K, Thomsen H, Schilling J, vaz Mendes S, Endler M, Kleiber R, Könies A, Borchardt M, Slaby C, Bluhm T, Zilker M, Carvalho B B 2021 Plasma Physics and Controlled Fusion 63 015005

    [6]

    Salewski M, Spong D A, Aleynikov P, Bilato R, Breizman B N, Briguglio S, Cai H, Chen L, Chen W, Duarte V N, Dumont R J, Falessi M V, Fitzgerald M, Fredrickson E D, García-Muñoz M, Gorelenkov N N, Hayward-Schneider T, Heidbrink W W, Hole M J, Kazakov Y O, Kiptily V G, Könies A, Kurki-Suonio T, Lauber P, Lazerson S A, Lin Z, Mishchenko A, Moseev D, Muscatello C M, Nocente M, Podestà M, Polevoi A, Schneider M, Sharapov S E, Snicker A, Todo Y, Qiu Z, Vlad G, Wang X, Zarzoso D, Van Zeeland M A, Zonca F, Pinches S D 2025 Nucl Fusion 65 043002

    [7]

    Xanthopoulos P, Mynick H E, Helander P, Turkin Y, Plunk G G, Jenko F, Gorler T, Told D, Bird T, Proll J H 2014 Phys Rev Lett 113 155001

    [8]

    Zhong W L, Zhao K J, Zou X L, Dong J Q 2020 Reviews of Modern Plasma Physics 4 11

    [9]

    Diallo A, Laggner F M 2021 Plasma Physics and Controlled Fusion 63 013001

    [10]

    Fujisawa A 2021 Proc Jpn Acad Ser B Phys Biol Sci 97 103

    [11]

    Nespoli F, Masuzaki S, Tanaka K, Ashikawa N, Shoji M, Gilson E P, Lunsford R, Oishi T, Ida K, Yoshinuma M, Takemura Y, Kinoshita T, Motojima G, Kenmochi N, Kawamura G, Suzuki C, Nagy A, Bortolon A, Pablant N A, Mollen A, Tamura N, Gates D A, Morisaki T 2022 Nat Phys 18 350

    [12]

    Sánchez E, Bañón Navarro A, Wilms F, Borchardt M, Kleiber R, Jenko F 2023 Nucl Fusion 63 046013

    [13]

    Liu Y, Tan Y, Pan O, Ke R, Wang W, Gao Z 2014 The Review of scientific instruments 85 11E802

    [14]

    Cheng Z, Tan Y, Gao Z, Wang S, Wang B, Liu W 2021 The Review of scientific instruments 92 053518

    [15]

    Guo D, Hu Q, Li D, Shen C, Wang N, Huang Z, Huang M, Ding Y, Xu G, Yu Q, Tang Y, Zhuang G 2017 The Review of scientific instruments 88 123502

    [16]

    Han D, Shen C, Wang N, Li D, Mao F, Ren Z, Ding Y 2021 Plasma Science and Technology 23 055104

    [17]

    Tu C, Liu A, Li Z, Tan M, Luo B, You W, Li C, Bai W, Fu C, Huang F, Xiao B, Shen B, Shi T, Chen D, Mao W, Li H, Xie J, Lan T, Ding W, Xiao C, Liu W 2017 The Review of scientific instruments 88 093513

    [18]

    Liang S Y, Ji X Q, Sun T F, Xu Y, Lu J, Yuan B S, Ren L L, Yang Q W 2017 AIP Advances 7 125004

    [19]

    Chen D, Shen B, Shi T, Guo B, Li T, Chen L, Xue M, Chu N 2023 Plasma Science and Technology 25 125102

    [20]

    Lan H, Shi T, Yan N, Li X, Li S, Chen R, Duan M, Hu G, Liu L, Zhang W, Chen M, Zheng Y, Yuan Z, Wang Y, Xu Z, Xu L, Zi P, Chen L, Liu S, Wu D, Ding G, Meng L, Wang Z, Zang Q, Wu M, Zhu X, Hao B, Lin X, Gao X, Wang L, Xu G 2023 Plasma Science and Technology 25 075105

    [21]

    Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Liu L N, Chen M, Chen L X, Chen D L, Shen B, Wang Y, Xu Z H, Lu Z K, Shao L M, Zheng Y Y, Yuan Z, Xu L Q, Hu G H, Chen L, Liu S C, Zi P F, Wang P, Wu D G, Ding G F, Meng L Y, Shen J F, Yang S, Shao J R, Zang Q, Wang L, Xu G S 2024 Fusion Eng Des 207 114636

    [22]

    Ouyang T B, Qian Y Z, Liu S Q, Yang X S, Chen X C 2022 AIP Advances 12 015314

    [23]

    Strait E J 2006 The Review of scientific instruments 77 023502

    [24]

    Heeter R F, Fasoli A F, Ali-Arshad S, Moret J M 2000 Review of Scientific Instruments 71 4092

    [25]

    Artaserse G, Baruzzo M, Henriques R B, Gerasimov S, Lam N, Tsalas M 2019 Fusion Eng Des 146 2781

    [26]

    Hole M J, Appel L C, Martin R 2009 The Review of scientific instruments 80 123507

    [27]

    Moreau P, Le-Luyer A, Spuig P, Malard P, Saint-Laurent F, Artaud J F, Morales J, Faugeras B, Heumann H, Cantone B, Moreau M, Brun C, Nouailletas R, Nardon E, Santraine B, Berne A, Kumari P, Belsare S, Team W 2018 The Review of scientific instruments 89 10J109

    [28]

    Takechi M, Matsunaga G, Sakurai S, Sasajima T, Yagyu J, Hoshi R, Kawamata Y, Kurihara K, Nishikawa T, Ryo T, Kagamihara S, Nakamura K 2015 Fusion Eng Des 96-97 985

    [29]

    Haskey S R, Blackwell B D, Seiwald B, Hole M J, Pretty D G, Howard J, Wach J 2013 The Review of scientific instruments 84 093501

    [30]

    Sakakibara S, Yamada H 2010 Fusion Sci Technol 58 471

    [31]

    Endler M, Brucker B, Bykov V, Cardella A, Carls A, Dobmeier F, Dudek A, Fellinger J, Geiger J, Grosser K, Grulke O, Hartmann D, Hathiramani D, Höchel K, Köppen M, Laube R, Neuner U, Peng X, Rahbarnia K, Rummel K, Sieber T, Thiel S, Vorköper A, Werner A, Windisch T, Ye M Y 2015 Fusion Eng Des 100 468

    [32]

    Ascasibar E, Lapayese F, Soleto A, Jimenez-Denche A, Cappa A, Pons-Villalonga P, Portas A B, Martin G, Barcala J M, Garcia-Gomez R, Chamorro M, Cebrian L, Anton R, Bueno L, Reynoso C, Guisse V, Lopez-Fraguas A 2022 The Review of scientific instruments 93 093508

    [33]

    Liu H, Shimizu A, Xu Y, Okamura S, Kinoshita S, Isobe M, Li Y, Xiong G, Wang X, Huang J, Cheng J, Liu H, Zhang X, Yin D, Wang Y, Murase T, Nakagawa S, Tang C 2021 Nucl Fusion 61 016014

    [34]

    Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y, Liu H F, Liu H, Huang J, Wang X, Cheng J, Xiong G, Tang C, Yin D, Wan Y 2022 Nucl Fusion 62 016010

    [35]

    Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J 2021 Nucl Fusion 61 036021

    [36]

    Huang J, Li M-S, Qin C, Wang X-Q 2022 Acta Phys Sin-Ch Ed 71 185202(in Chinese)[黄捷, 李沫杉, 覃程, 王先驱 2022 物理学报71 185202]

    [37]

    Liu H, Zhang J, Xu Y, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X, Huang J, Cheng J, Liu H, Zhang X, Tang C 2023 Nucl Fusion 63 026018

    [38]

    Su X, Wang X-Q, Fu T, Xu Y-H 2023 Acta Phys Sin-Ch Ed 72 215205 (in Chinese)[苏祥, 王先驱, 符添, 许宇鸿 2023物理学报72 215205]

    [39]

    Li D, Liu H 2025 Acta Phys Sin-Ch Ed 74 055203(in Chinese)[李丹, 刘海峰 2025 物理学报 74 055203 ]

    [40]

    Cheng J, et al., submitted to Plasma Phys. Control. Fusion (PPCF-105174)

    [41]

    Lan H, et al., submitted to Fusion Engineering and Design (FUSENGDES-D-25-00438)

    [42]

    Huang X L 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [黄晓莉 2009 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [43]

    Xu Y D 2019 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese) [许亚东2019 博士学位论文(太原:中北大学)]

    [44]

    Hu Q, Liu W J, Lai X L, Zhang D M 2021 Telecommunication Transmission Principles, Systems and Engineering (Xi'an: Xidian University Press) p26 (in Chinese) [胡庆,刘文晶,赖小龙,张德民 2021 电信传输原理、系统及工程(西安:西安电子科技大学出版社) 第26页]

    [45]

    Chen L-X, Chen D-L, Shen B, Qian J-P, Chen M 2024 Nuclear Fusion and Plasma Physics 44 105(in Chinese)[陈力行,陈大龙,沈飊,钱金平,陈明 2024 核聚变与等离子体物理 44 105]

    [46]

    Zhang J-Z, Ji X-Q, Sun T-F, Liang S-Y, Wang A, Wang J, Li J-X, Liu J, Yang Q-W 2021 Nuclear Fusion and Plasma Physics 41 585[张均钊,季小全,孙腾飞,梁绍勇,王傲, 王金,李佳鲜,刘健,杨青巍 2021核聚变与等离子体物理 41 585]

    [47]

    Shen B 2016 Fusion Eng Des 112 969

  • [1] 李加林, 张国峰, 李思瑶, 王甜珺, 魏雪齐, 李华, 古元冬, 孙立敏. 应用于超导脑磁系统的集成SQUID芯片的设计与性能评估. 物理学报, doi: 10.7498/aps.74.20250426
    [2] 李丹, 刘海峰. 中国首台准环对称仿星器中线圈形变对磁拓扑结构的影响. 物理学报, doi: 10.7498/aps.74.20241606
    [3] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制. 物理学报, doi: 10.7498/aps.73.20240273
    [4] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用. 物理学报, doi: 10.7498/aps.73.20231697
    [5] 苏祥, 王先驱, 符添, 许宇鸿. CFQS准环对称仿星器低$\boldsymbol \beta$等离子体中三维磁岛的抑制机制. 物理学报, doi: 10.7498/aps.72.20230546
    [6] 陈彦君, 王圣业, 符翔, 刘伟. 基于νt尺度方程的雷诺应力模型初步研究. 物理学报, doi: 10.7498/aps.71.20220417
    [7] 黄捷, 李沫杉, 覃程, 王先驱. 中国首台准环对称仿星器中离子温度梯度模的模拟研究. 物理学报, doi: 10.7498/aps.71.20220729
    [8] 李朝辉, 赵建科, 徐亮, 刘峰, 郭毅, 刘锴, 赵青. 点源透过率测试系统精度标定与分析. 物理学报, doi: 10.7498/aps.65.114206
    [9] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, doi: 10.7498/aps.65.080701
    [10] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用. 物理学报, doi: 10.7498/aps.63.208401
    [11] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, doi: 10.7498/aps.63.228501
    [12] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, doi: 10.7498/aps.59.8591
    [13] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, doi: 10.7498/aps.57.678
    [14] 王 冬, 陈代兵, 范植开, 邓景康. HEM11模磁绝缘线振荡器的高频分析. 物理学报, doi: 10.7498/aps.57.4875
    [15] 杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨 莉, 王海洋, 李洪玉, 李静雅. “闪光二号”加速器HPIB的产生及应用初步结果. 物理学报, doi: 10.7498/aps.53.406
    [16] 孙喜明, 姚朝晖, 杨京龙. BGK方法在三维非结构网格上的初步应用. 物理学报, doi: 10.7498/aps.51.1942
    [17] 陈晓波, N.Sawanobori, 聂玉昕. 氟氧化物玻璃陶瓷中交叉能量传递与荧光防伪的初步研究. 物理学报, doi: 10.7498/aps.49.2488
    [18] 江少恩, 郑志坚, 成金秀, 孙可煦, 杨家敏, 缪文勇, 王红斌. 管靶X射线辐射输运初步研究Ⅱ.实验测量与分析. 物理学报, doi: 10.7498/aps.49.1101
    [19] 周介湘, 郑培菊, 马礼敦. F函数仿派特逊函数用法的初步探讨. 物理学报, doi: 10.7498/aps.20.117
    [20] 朱物华, 张仲桂. 低频与高频滤波器之瞬流. 物理学报, doi: 10.7498/aps.2.154
计量
  • 文章访问数:  415
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-27

/

返回文章
返回