-
对于磁约束聚变实验装置,磁探针诊断是一种基础又非常重要的研究等离子体磁涨落的诊断。中国首台准环对称仿星器(Chinese FirstQuasi-axisymmetric Stellarator, CFQS)实验运行的第一阶段(也称为CFQS-T 准环对称仿星器)的物理实验研究需要磁探针诊断提供相应的等离子体磁涨落测量。本文报道了在 CFQS-T 准环对称仿星器上新研制的高频磁探针阵列诊断,它由 8 个相同的三维高频磁探针组成,每个高频磁探针可以同时测量极向、径向及环向三个方向的磁涨落信号;优化的空间布置使得高频磁探针阵列可以用于研究磁涨落的极向和环向传播特征,其最高环向模数分辨相比于低频磁探针阵列的 n=±6 提高至 n=±16。本文将简要介绍高频磁探针阵列诊断的机械系统、信号传输线、采集与控制系统等主要子系统及在研制各系统过程中克服的挑战,以及对高频磁探针的有效面积标定和原位频率响应标定的研究结果,CFQS-T 高频磁探针每个测量方向的共振频率均大于400 kHz, 满足测量50-300 kHz高频磁涨落的设计需求。初步的应用研究显示高频磁探针阵列诊断可用于低频和高频磁涨落的时频谱、极向和环向传播分析,值得注意的是本文首次报道了对 CFQS-T 上高频磁涨落的测量分析结果。高频磁探针阵列诊断的成功研制将有助于 CFQS-T 深入开展等离子体电磁涨落的相关研究。
-
关键词:
- CFQS-T 准环对称仿星器 /
- 高频磁探针阵列 /
- 系统设置与标定 /
- 初步应用
For magnetic confined fusion devices, magnetic probe diagnostic is a basic but very important diagnostic for studying plasma magnetic fluctuations. The first experimental phase of the Chinese First Quasi-axisymmetric Stellarator (CFQS), which is also called CFQS-T, needs magnetic probe diagnostics to provide plasma magnetic fluctuation measurements, especially the high-frequency (of frequency 50≤f≤300 kHz) magnetic fluctuation measurements. This article reports the newly developed high-frequency magnetic probe array (HFMPA) diagnostic on the CFQS-T. It consists of 8 identical three-dimensional high-frequency magnetic probes, each of which can simultaneously measure magnetic fluctuations in the poloidal, radial and toroidal directions; the HFMPA magnetic probes are carefully mounted on the inner vacuum vessel wall of the CFQS-T, and their positions are precisely measured by the laser tracker system; and the HFMPA can be used to study the poloidal and toroidal propagation characteristics of magnetic fluctuations due to the optimized spatial arrangement, and its maximum toroidal mode number resolution is improved to n=±16 compared with n=±6 of the low-frequency magnetic probe array (LFMPA, used for the f≤50 kHz magnetic fluctuation measurements). The main subsystems of the HFMPA diagnostic, such as the mechanical system, signal transmission lines, acquisition and control systems, and the challenges overcome in the development of each subsystem, will be briefly introduced in this article. The effective areas of the HFMPA magnetic probes are calibrated by the relative calibration method, which shows that they are around 0.02 m2. The in-situ frequency response of the HFMPA magnetic probes is calibrated with a LCR digital bridge with a maximum working frequency of 10 MHz. The resonance frequency of the HFMPA magnetic probe in each measurement direction is greater than 400 kHz, which meets the design requirements for measuring 50-300 kHz high-frequency magnetic fluctuations in CFQS-T. Preliminary applications of the HFMPA diagnostic in studying the low-frequency (1.5-16.0 kHz) magnetic fluctuations and high-frequency (65-105 kHz) magnetic fluctuations in CFQS-T are briefly introduced, which shows that the HFMPA diagnostic works well for providing the spectrogram, poloidal, and toroidal propagation information of low-frequency and high-frequency magnetic fluctuations. It is worth noting that this article reports the measurement and analysis results of high-frequency (65-105 kHz) magnetic fluctuations in CFQS-T for the first time. The successful development of the HFMPA diagnostic will help to carry out in-depth research on plasma magnetic fluctuations in CFQS-T stellarator.-
Keywords:
- CFQS-T quasi-axisymmetric stellarator /
- high-frequency magnetic probe array /
- setup and calibration /
- preliminary application
-
[1] Gates D A, Anderson D, Anderson S, Zarnstorff M, Spong D A, Weitzner H, Neilson G H, Ruzic D, Andruczyk D, Harris J H, Mynick H, Hegna C C, Schmitz O, Talmadge J N, Curreli D, Maurer D, Boozer A H, Knowlton S, Allain J P, Ennis D, Wurden G, Reiman A, Lore J D, Landreman M, Freidberg J P, Hudson S R, Porkolab M, Demers D, Terry J, Edlund E, Lazerson S A, Pablant N, Fonck R, Volpe F, Canik J, Granetz R, Ware A, Hanson J D, Kumar S, Deng C, Likin K, Cerfon A, Ram A, Hassam A, Prager S, Paz-Soldan C, Pueschel M J, Joseph I, Glasser A H 2018 Journal of Fusion Energy 37 51
[2] Yoshida M, McDermott R M, Angioni C, Camenen Y, Citrin J, Jakubowski M, Hughes J W, Idomura Y, Mantica P, Mariani A, Mordijck S, Paul E J, Tala T, Verdoolaege G, Zocco A, Casson F J, Dif-Pradalier G, Duval B, Grierson B A, Kaye S M, Manas P, Maslov M, Odstrcil T, Rice J E, Schmitz L, Sciortino F, Solano E R, Staebler G, Valovič M, Wolfrum E, Snipes J A 2025 Nucl Fusion 65 033001
[3] Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A, Todo Y 2011 Plasma Physics and Controlled Fusion 53 024008
[4] Chen L, Zonca F 2016 Reviews of Modern Physics 88 015008
[5] Rahbarnia K, Thomsen H, Schilling J, vaz Mendes S, Endler M, Kleiber R, Könies A, Borchardt M, Slaby C, Bluhm T, Zilker M, Carvalho B B 2021 Plasma Physics and Controlled Fusion 63 015005
[6] Salewski M, Spong D A, Aleynikov P, Bilato R, Breizman B N, Briguglio S, Cai H, Chen L, Chen W, Duarte V N, Dumont R J, Falessi M V, Fitzgerald M, Fredrickson E D, García-Muñoz M, Gorelenkov N N, Hayward-Schneider T, Heidbrink W W, Hole M J, Kazakov Y O, Kiptily V G, Könies A, Kurki-Suonio T, Lauber P, Lazerson S A, Lin Z, Mishchenko A, Moseev D, Muscatello C M, Nocente M, Podestà M, Polevoi A, Schneider M, Sharapov S E, Snicker A, Todo Y, Qiu Z, Vlad G, Wang X, Zarzoso D, Van Zeeland M A, Zonca F, Pinches S D 2025 Nucl Fusion 65 043002
[7] Xanthopoulos P, Mynick H E, Helander P, Turkin Y, Plunk G G, Jenko F, Gorler T, Told D, Bird T, Proll J H 2014 Phys Rev Lett 113 155001
[8] Zhong W L, Zhao K J, Zou X L, Dong J Q 2020 Reviews of Modern Plasma Physics 4 11
[9] Diallo A, Laggner F M 2021 Plasma Physics and Controlled Fusion 63 013001
[10] Fujisawa A 2021 Proc Jpn Acad Ser B Phys Biol Sci 97 103
[11] Nespoli F, Masuzaki S, Tanaka K, Ashikawa N, Shoji M, Gilson E P, Lunsford R, Oishi T, Ida K, Yoshinuma M, Takemura Y, Kinoshita T, Motojima G, Kenmochi N, Kawamura G, Suzuki C, Nagy A, Bortolon A, Pablant N A, Mollen A, Tamura N, Gates D A, Morisaki T 2022 Nat Phys 18 350
[12] Sánchez E, Bañón Navarro A, Wilms F, Borchardt M, Kleiber R, Jenko F 2023 Nucl Fusion 63 046013
[13] Liu Y, Tan Y, Pan O, Ke R, Wang W, Gao Z 2014 The Review of scientific instruments 85 11E802
[14] Cheng Z, Tan Y, Gao Z, Wang S, Wang B, Liu W 2021 The Review of scientific instruments 92 053518
[15] Guo D, Hu Q, Li D, Shen C, Wang N, Huang Z, Huang M, Ding Y, Xu G, Yu Q, Tang Y, Zhuang G 2017 The Review of scientific instruments 88 123502
[16] Han D, Shen C, Wang N, Li D, Mao F, Ren Z, Ding Y 2021 Plasma Science and Technology 23 055104
[17] Tu C, Liu A, Li Z, Tan M, Luo B, You W, Li C, Bai W, Fu C, Huang F, Xiao B, Shen B, Shi T, Chen D, Mao W, Li H, Xie J, Lan T, Ding W, Xiao C, Liu W 2017 The Review of scientific instruments 88 093513
[18] Liang S Y, Ji X Q, Sun T F, Xu Y, Lu J, Yuan B S, Ren L L, Yang Q W 2017 AIP Advances 7 125004
[19] Chen D, Shen B, Shi T, Guo B, Li T, Chen L, Xue M, Chu N 2023 Plasma Science and Technology 25 125102
[20] Lan H, Shi T, Yan N, Li X, Li S, Chen R, Duan M, Hu G, Liu L, Zhang W, Chen M, Zheng Y, Yuan Z, Wang Y, Xu Z, Xu L, Zi P, Chen L, Liu S, Wu D, Ding G, Meng L, Wang Z, Zang Q, Wu M, Zhu X, Hao B, Lin X, Gao X, Wang L, Xu G 2023 Plasma Science and Technology 25 075105
[21] Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Liu L N, Chen M, Chen L X, Chen D L, Shen B, Wang Y, Xu Z H, Lu Z K, Shao L M, Zheng Y Y, Yuan Z, Xu L Q, Hu G H, Chen L, Liu S C, Zi P F, Wang P, Wu D G, Ding G F, Meng L Y, Shen J F, Yang S, Shao J R, Zang Q, Wang L, Xu G S 2024 Fusion Eng Des 207 114636
[22] Ouyang T B, Qian Y Z, Liu S Q, Yang X S, Chen X C 2022 AIP Advances 12 015314
[23] Strait E J 2006 The Review of scientific instruments 77 023502
[24] Heeter R F, Fasoli A F, Ali-Arshad S, Moret J M 2000 Review of Scientific Instruments 71 4092
[25] Artaserse G, Baruzzo M, Henriques R B, Gerasimov S, Lam N, Tsalas M 2019 Fusion Eng Des 146 2781
[26] Hole M J, Appel L C, Martin R 2009 The Review of scientific instruments 80 123507
[27] Moreau P, Le-Luyer A, Spuig P, Malard P, Saint-Laurent F, Artaud J F, Morales J, Faugeras B, Heumann H, Cantone B, Moreau M, Brun C, Nouailletas R, Nardon E, Santraine B, Berne A, Kumari P, Belsare S, Team W 2018 The Review of scientific instruments 89 10J109
[28] Takechi M, Matsunaga G, Sakurai S, Sasajima T, Yagyu J, Hoshi R, Kawamata Y, Kurihara K, Nishikawa T, Ryo T, Kagamihara S, Nakamura K 2015 Fusion Eng Des 96-97 985
[29] Haskey S R, Blackwell B D, Seiwald B, Hole M J, Pretty D G, Howard J, Wach J 2013 The Review of scientific instruments 84 093501
[30] Sakakibara S, Yamada H 2010 Fusion Sci Technol 58 471
[31] Endler M, Brucker B, Bykov V, Cardella A, Carls A, Dobmeier F, Dudek A, Fellinger J, Geiger J, Grosser K, Grulke O, Hartmann D, Hathiramani D, Höchel K, Köppen M, Laube R, Neuner U, Peng X, Rahbarnia K, Rummel K, Sieber T, Thiel S, Vorköper A, Werner A, Windisch T, Ye M Y 2015 Fusion Eng Des 100 468
[32] Ascasibar E, Lapayese F, Soleto A, Jimenez-Denche A, Cappa A, Pons-Villalonga P, Portas A B, Martin G, Barcala J M, Garcia-Gomez R, Chamorro M, Cebrian L, Anton R, Bueno L, Reynoso C, Guisse V, Lopez-Fraguas A 2022 The Review of scientific instruments 93 093508
[33] Liu H, Shimizu A, Xu Y, Okamura S, Kinoshita S, Isobe M, Li Y, Xiong G, Wang X, Huang J, Cheng J, Liu H, Zhang X, Yin D, Wang Y, Murase T, Nakagawa S, Tang C 2021 Nucl Fusion 61 016014
[34] Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y, Liu H F, Liu H, Huang J, Wang X, Cheng J, Xiong G, Tang C, Yin D, Wan Y 2022 Nucl Fusion 62 016010
[35] Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J 2021 Nucl Fusion 61 036021
[36] Huang J, Li M-S, Qin C, Wang X-Q 2022 Acta Phys Sin-Ch Ed 71 185202(in Chinese)[黄捷, 李沫杉, 覃程, 王先驱 2022 物理学报71 185202]
[37] Liu H, Zhang J, Xu Y, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X, Huang J, Cheng J, Liu H, Zhang X, Tang C 2023 Nucl Fusion 63 026018
[38] Su X, Wang X-Q, Fu T, Xu Y-H 2023 Acta Phys Sin-Ch Ed 72 215205 (in Chinese)[苏祥, 王先驱, 符添, 许宇鸿 2023物理学报72 215205]
[39] Li D, Liu H 2025 Acta Phys Sin-Ch Ed 74 055203(in Chinese)[李丹, 刘海峰 2025 物理学报 74 055203 ]
[40] Cheng J, et al., submitted to Plasma Phys. Control. Fusion (PPCF-105174)
[41] Lan H, et al., submitted to Fusion Engineering and Design (FUSENGDES-D-25-00438)
[42] Huang X L 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [黄晓莉 2009 博士学位论文(哈尔滨:哈尔滨工业大学)]
[43] Xu Y D 2019 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese) [许亚东2019 博士学位论文(太原:中北大学)]
[44] Hu Q, Liu W J, Lai X L, Zhang D M 2021 Telecommunication Transmission Principles, Systems and Engineering (Xi'an: Xidian University Press) p26 (in Chinese) [胡庆,刘文晶,赖小龙,张德民 2021 电信传输原理、系统及工程(西安:西安电子科技大学出版社) 第26页]
[45] Chen L-X, Chen D-L, Shen B, Qian J-P, Chen M 2024 Nuclear Fusion and Plasma Physics 44 105(in Chinese)[陈力行,陈大龙,沈飊,钱金平,陈明 2024 核聚变与等离子体物理 44 105]
[46] Zhang J-Z, Ji X-Q, Sun T-F, Liang S-Y, Wang A, Wang J, Li J-X, Liu J, Yang Q-W 2021 Nuclear Fusion and Plasma Physics 41 585[张均钊,季小全,孙腾飞,梁绍勇,王傲, 王金,李佳鲜,刘健,杨青巍 2021核聚变与等离子体物理 41 585]
[47] Shen B 2016 Fusion Eng Des 112 969
计量
- 文章访问数: 415
- PDF下载量: 5
- 被引次数: 0