搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于νt尺度方程的雷诺应力模型初步研究

陈彦君 王圣业 符翔 刘伟

引用本文:
Citation:

基于νt尺度方程的雷诺应力模型初步研究

陈彦君, 王圣业, 符翔, 刘伟

Preliminary study on Reynolds stress model based on νt-scale equation

Chen Yan-Jun, Wang Sheng-Ye, Fu Xiang, Liu Wei
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 雷诺应力模型一直是湍流模式理论研究的前沿和难点, 而提高数值鲁棒性是其广泛开展工程应用的关键. 借鉴经典的$k$-$kL$湍流模型, 本文构造了一种新的${\nu_{\rm{t}}}$尺度方程, 并将其用于耦合SSG/LRR模式从而形成SSG/LRR-${\nu_{\rm{t}}}$雷诺应力模型. 通过零压力梯度湍流平板边界层、翼型尾迹流、超声速方腔流和NACA0012翼型45°迎角分离流动4个标准算例对新模型进行了验证与确认. 同时, 为了测试模型的数值鲁棒性, 采用高精度数值格式对模型方程进行了离散求解, 并与SA涡粘模型和SSG/LRR-$\omega$雷诺应力模型进行对比. 结果表明: ${\nu_{\rm{t}}}$尺度方程在黏性壁面边界严格为零, 相比传统的$\omega$尺度, 具有更好的数值鲁棒性, 从而可实现新模型与高精度数值格式的匹配并获得更好的网格收敛效率; 新模型具备雷诺应力模型的传统优势, 可对拐角流动进行很好的模拟; 具备尺度自适应能力, 对于非定常分离流动的模拟存在一定的潜力.
    Reynolds stress model has always been the frontier and challenging problem in turbulence model theory research, where improving numerical robustness is the key to its wide application in engineering. Referring to the classical $k$-$kL$ turbulence model, a new ${\nu_t}$-scale equation is constructed and used to couple the SSG/LRR model to form a so-called SSG/LRR-${\nu_t}$ Reynolds stress model. Four benchmark cases, including zero pressure gradient turbulent plate boundary layer, airfoil wake flow, supersonic square duck flow and separated flow over NACA0012 airfoil at 45 degree angle of attack, are carried out to test the new turbulence model. At the same time, high-order numerical schemes are used to discretize the turbulence equations in order to assess its numerical robustness. The results are compared with those of SA eddy viscosity model and SSG/LRR-$\omega$ Reynolds stress model. It is shown that the ${\nu_t} $-scale equation is strictly equal to zero at the viscous wall boundary. Compared with the traditional $\omega $-scale, it has better numerical robustness. Along with this, the new model can be matched with the high-order numerical schemes and obtain a better efficiency in the mesh convergence. Moreover, the new model has the inherent advantage of Reynolds stress model in simulating the corner flow and has the potential in scale adaptive simulation of unsteady separated flow.
      通信作者: 王圣业, wangshengye13@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12002379)、湖南省自然科学基金(批准号: 2020JJ5648)、国防科技大学科研计划(批准号: ZK20-43)和国家专项工程 (批准号: GJXM92579)资助的课题
      Corresponding author: Wang Sheng-Ye, wangshengye13@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12002379), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5648), the Scientific Research Project of National University of Defence Technology, China (Grant No. ZK20-43), and the National Key Project of China (Grant No. GJXM92579)
    [1]

    Wilcox D C 2006 Turbulence Modeling for CFD (3rd Ed.) (La Canda: DCW Industries)

    [2]

    周培源 1940 中国物理学报 4 1Google Scholar

    Chou P Y 1940 Chin. J. Phys. 4 1Google Scholar

    [3]

    Chou P Y 1945 Quart. Appl. Math. 3 38Google Scholar

    [4]

    王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701Google Scholar

    Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701Google Scholar

    [5]

    王圣业, 符翔, 杨小亮, 郑浩榜, 邓小刚 2021 力学进展 51 29Google Scholar

    Wang S Y, Fu X, Yang X L, Zheng H B, Deng X G 2021 Adv. Mech. 51 29Google Scholar

    [6]

    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D 2014 NASA/CR-2014-218178

    [7]

    Eisfeld B, Brodersen O 2005 AIAA Paper 4727

    [8]

    Launder B E, Reece G L, Rodi W 1975 J. Fluid Mech. 68 537Google Scholar

    [9]

    Speziale C G, Abid R, Anderson E C 1992 AIAA J. 30 324Google Scholar

    [10]

    Menter F R 1994 AIAA J. 32 1598Google Scholar

    [11]

    Eisfeld B, Rumsey C, Togiti V 2016 AIAA J. 54 1524Google Scholar

    [12]

    Cecora R D, Radespiel R, Eisfeld B, Probst A 2015 AIAA J. 53 739Google Scholar

    [13]

    Wang S Y, Dong Y D, Deng X G, et al. 2018 J. Aircraft 53 1177Google Scholar

    [14]

    Eisfeld B, Rumsey C, Togiti V, Braun S, Stürmer A 2021 AIAA J. Published online

    [15]

    Togiti V K, Eisfeld B 2015 AIAA Paper 2925

    [16]

    Ilinca F, Pelletier D 1998 AIAA J. 32 44

    [17]

    Abdol-Hamid K S 2019 AIAA Paper 1878Google Scholar

    [18]

    舒博文, 杜一鸣, 高正红, 夏露, 陈树生 2022 航空学报 43 126385Google Scholar

    Shu B W, Du Y M, Gao Z H, Xia L, Chen S S 2022 Acta Aeronautica et Astronautica Sinica 43 126385Google Scholar

    [19]

    Rotta J C 1968 Aerodynamische Versuchsanstalt Göttingen, Rep. 69 A14

    [20]

    Menter F R, Egorov Y 2010 Flow, Turbulence, and Combustion 85 113Google Scholar

    [21]

    Abdol-Hamid K S, Carlson J R, Rumsey C L 2016 AIAA Paper 3941

    [22]

    Spalart P R, Allmaras S R 1994 Recherche Aerospatiale 1 5

    [23]

    Speziale C G, Sarkar S, Gatski T B 1991 J 1991 J. Fluid Mech. 227 245Google Scholar

    [24]

    王光学, 王圣业, 葛明明, 邓小刚 2018 物理学报 67 194701Google Scholar

    Wang G X, Wang S Y, Ge M M, Deng X G 2018 Acta Phys. Sin. 67 194701Google Scholar

    [25]

    李昊, 刘伟, 王圣业 2020 物理学报 69 144702Google Scholar

    Li H, Liu W, Wang S Y 2020 Acta Phys. Sin. 69 144702Google Scholar

    [26]

    Deng X G, Zhang H X 2000 J. Comput. Phys. 165 90Google Scholar

    [27]

    Deng X G, Min Y B, Mao M L, Liu H Y, Tu G H, Zhang H X 2013 J. Comput. Phys. 239 90Google Scholar

    [28]

    Rumsey C Turbulence Modeling Resource https://turbmodels.larc.nasa.gov/

    [29]

    Strelets M 2001 AIAA Paper 0879

  • 图 1  平板边界层网格收敛性分析 (a) 平板网格示意图; (b) 阻力系数结果

    Fig. 1.  Convergence analysis on plate boundary layer meshs: (a) Sketch of plate mesh; (b) drag coefficient results

    图 2  SSG/LRR-$ {\nu_{\rm{t}}} $模型在$ \Delta y_1^+ = 0.37 $网格上的结果 (a) $ x=0.97 $处速度型; (b) 摩擦阻力分布

    Fig. 2.  Results of SSG/LRR-$ {\nu_{\rm{t}}} $ model on grid of $ \Delta y_1^+ = 0.37 $: (a) u-velocity profile at $ x=0.97 $; (b) friction drag coefficient along the plate

    图 3  $ x=0.97 $处摩擦阻力误差与网格尺度和计算时间的关系 (a) 误差与网格尺度; (b) 误差与计算时间

    Fig. 3.  Relationship between friction drag error at $ x=0.97 $ and grid scale as well as CPU time: (a) Error vs. grid scale; (b) error vs. CPU time

    图 4  翼型尾迹流网格及切面

    Fig. 4.  Airfoil wake mesh and slices

    图 5  翼型尾迹流雷诺切应力分布

    Fig. 5.  Reynolds shear stress distribution on airfoil wake case

    图 6  方腔流动示意图 (a) 计算网格及边界条件; (b) SA模型在$ x/D = 50 $面上的速度矢量图; (c) SSG/LRR-$ \omega $模型在$ x/D = 50 $面上的速度矢量图; (d) SSG/LRR-$ {\nu_{\rm{t}}} $模型在$ x/D = 50 $面上的速度矢量图

    Fig. 6.  Sketch of square duct flow: (a) Mesh and boundary conditions; (b) velocity vector distributions on $ x/D = 50 $ by SA; (c) velocity vector distributions on $ x/D = 50 $ by SSG/LRR-$ \omega $; (d) velocity vector distributions on $ x/D = 50 $ by SSG/LRR-$ {\nu_{\rm{t}}} $

    图 7  流向速度沿对角线的分布 (a) $ x/D = 40 $; (b) $ x/D = 50 $

    Fig. 7.  Distribution of u-velocity along diagonal: (a) $ x/D = 40 $; (b) $ x/D = 50 $

    图 8  NACA0012翼型网格及表面压力分布对比

    Fig. 8.  NACA0012 airfoil mesh and comparison of surface pressure distributions

    图 9  展向涡量云图

    Fig. 9.  Spanwise vorticity distributions

    图 10  气动力随时间的变化过程 (a) 升力系数; (b) 阻力系数

    Fig. 10.  History of aerodynamic forces over time: (a) Lift coefficient; (b) Drag coefficient

    表 1  再分配项系数

    Table 1.  Coefficients in redistribution item.

    $ {C_1} $ $ {C_1}^* $ $ {C_2} $ $ {C_3} $ $ {C_3}^* $ $ {C_4} $ $ {C_5} $
    $ {\phi^\text{(SSG)}} $ 1.7 0.9 1.05 0.8 0.65 0.625 0.2
    $ {\phi^\text{(LRR)}} $ 1.8 0 0 0.8 0 0.971 0.578
    下载: 导出CSV
  • [1]

    Wilcox D C 2006 Turbulence Modeling for CFD (3rd Ed.) (La Canda: DCW Industries)

    [2]

    周培源 1940 中国物理学报 4 1Google Scholar

    Chou P Y 1940 Chin. J. Phys. 4 1Google Scholar

    [3]

    Chou P Y 1945 Quart. Appl. Math. 3 38Google Scholar

    [4]

    王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701Google Scholar

    Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701Google Scholar

    [5]

    王圣业, 符翔, 杨小亮, 郑浩榜, 邓小刚 2021 力学进展 51 29Google Scholar

    Wang S Y, Fu X, Yang X L, Zheng H B, Deng X G 2021 Adv. Mech. 51 29Google Scholar

    [6]

    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D 2014 NASA/CR-2014-218178

    [7]

    Eisfeld B, Brodersen O 2005 AIAA Paper 4727

    [8]

    Launder B E, Reece G L, Rodi W 1975 J. Fluid Mech. 68 537Google Scholar

    [9]

    Speziale C G, Abid R, Anderson E C 1992 AIAA J. 30 324Google Scholar

    [10]

    Menter F R 1994 AIAA J. 32 1598Google Scholar

    [11]

    Eisfeld B, Rumsey C, Togiti V 2016 AIAA J. 54 1524Google Scholar

    [12]

    Cecora R D, Radespiel R, Eisfeld B, Probst A 2015 AIAA J. 53 739Google Scholar

    [13]

    Wang S Y, Dong Y D, Deng X G, et al. 2018 J. Aircraft 53 1177Google Scholar

    [14]

    Eisfeld B, Rumsey C, Togiti V, Braun S, Stürmer A 2021 AIAA J. Published online

    [15]

    Togiti V K, Eisfeld B 2015 AIAA Paper 2925

    [16]

    Ilinca F, Pelletier D 1998 AIAA J. 32 44

    [17]

    Abdol-Hamid K S 2019 AIAA Paper 1878Google Scholar

    [18]

    舒博文, 杜一鸣, 高正红, 夏露, 陈树生 2022 航空学报 43 126385Google Scholar

    Shu B W, Du Y M, Gao Z H, Xia L, Chen S S 2022 Acta Aeronautica et Astronautica Sinica 43 126385Google Scholar

    [19]

    Rotta J C 1968 Aerodynamische Versuchsanstalt Göttingen, Rep. 69 A14

    [20]

    Menter F R, Egorov Y 2010 Flow, Turbulence, and Combustion 85 113Google Scholar

    [21]

    Abdol-Hamid K S, Carlson J R, Rumsey C L 2016 AIAA Paper 3941

    [22]

    Spalart P R, Allmaras S R 1994 Recherche Aerospatiale 1 5

    [23]

    Speziale C G, Sarkar S, Gatski T B 1991 J 1991 J. Fluid Mech. 227 245Google Scholar

    [24]

    王光学, 王圣业, 葛明明, 邓小刚 2018 物理学报 67 194701Google Scholar

    Wang G X, Wang S Y, Ge M M, Deng X G 2018 Acta Phys. Sin. 67 194701Google Scholar

    [25]

    李昊, 刘伟, 王圣业 2020 物理学报 69 144702Google Scholar

    Li H, Liu W, Wang S Y 2020 Acta Phys. Sin. 69 144702Google Scholar

    [26]

    Deng X G, Zhang H X 2000 J. Comput. Phys. 165 90Google Scholar

    [27]

    Deng X G, Min Y B, Mao M L, Liu H Y, Tu G H, Zhang H X 2013 J. Comput. Phys. 239 90Google Scholar

    [28]

    Rumsey C Turbulence Modeling Resource https://turbmodels.larc.nasa.gov/

    [29]

    Strelets M 2001 AIAA Paper 0879

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [4] 郑天韵, 王圣业, 王光学, 邓小刚. 基于深度残差网络的高精度自然转捩模拟方法. 物理学报, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [5] 李昊, 刘伟, 王圣业. 针对典型分离流动数值模拟的自适应耗散调节方法. 物理学报, 2020, 69(14): 144702. doi: 10.7498/aps.69.20200102
    [6] 王光学, 王圣业, 葛明明, 邓小刚. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [7] 顾娟, 黄荣宗, 刘振宇, 吴慧英. 一种滑移区气体流动的格子Boltzmann曲边界处理新格式. 物理学报, 2017, 66(11): 114701. doi: 10.7498/aps.66.114701
    [8] 王圣业, 王光学, 董义道, 邓小刚. 基于雷诺应力模型的高精度分离涡模拟方法. 物理学报, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [9] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [10] 张忠宇, 姚熊亮, 张阿漫. 基于间断有限元方法的并列圆柱层流流动特性. 物理学报, 2016, 65(8): 084701. doi: 10.7498/aps.65.084701
    [11] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [12] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析. 物理学报, 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [13] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [14] 岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜. 草原下垫面湍流动量和感热相似性函数及总体输送系数的特征. 物理学报, 2012, 61(21): 219201. doi: 10.7498/aps.61.219201
    [15] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [16] 程雪涛, 徐向华, 梁新刚. 广义流动中的积原理. 物理学报, 2011, 60(11): 118103. doi: 10.7498/aps.60.118103
    [17] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [18] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
    [19] 尹绍全, 彭晓东. 基于电阻性交换模湍流的环带流动力学. 物理学报, 2004, 53(9): 3094-3098. doi: 10.7498/aps.53.3094
    [20] 周培源. 雷诺求似应力方法的推广和湍流的性质. 物理学报, 1940, 4(1): 1-34. doi: 10.7498/aps.4.1
计量
  • 文章访问数:  4672
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-10
  • 上网日期:  2022-08-01
  • 刊出日期:  2022-08-20

/

返回文章
返回