搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向集成电压调节器的甚高频磁芯薄膜材料

彭川 何禹含 白飞明

引用本文:
Citation:

面向集成电压调节器的甚高频磁芯薄膜材料

彭川, 何禹含, 白飞明

Very-high-frequency magnetic core films for integrated volatage regulators

Chuan Peng, Yuhan He, Feiming Bai
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 随着三维异构集成技术的兴起与大规模应用,电感型集成电压调节器在移动终端及高算力设备中的重要性日益凸显,同时也为高频软磁薄膜材料带来了重要的发展机遇。本文基于片上薄膜功率电感的应用需求,首先梳理了坡莫合金、Co基非晶金属薄膜以及FeCo基纳米复合颗粒膜三类磁芯膜材料的优势与局限性,重点探讨了微米级厚度叠层磁芯膜所面临的技术要求与挑战。其次,几乎所有的片上电感都工作在难轴激发模式,即电感激发磁场的方向要与磁芯膜的难磁化方向平行。本文对比了两种制备大面积均匀单轴各向异性磁芯膜的工艺方法、各自特点及对静态和高频软磁性能的影响,并且分析了图形化对于磁芯膜磁畴结构、高频磁损耗的作用机制以及相应的优化策略。随后,从工艺兼容与长期服役两个维度,探讨了磁芯膜磁导率与各向异性的温度稳定性问题。尽管三类磁芯膜的居里温度和晶化温度较高,但是实际制程温度的上限会受到热对于磁性原子对取向、微观结构缺陷和晶粒尺寸的影响。最后,针对当前高频、大信号条件下磁芯膜磁损耗测试中存在的瓶颈问题进行了总结,并展望了为满足片上功率电感对更高饱和电流和更低磁损耗需求,未来磁芯膜发展的技术路径。
    With the rise and wide applications of 3D heterogeneous integration technology, inductive voltage regulators have become increasingly important for mobile terminals and high-computing-power devices, while also offering significant development opportunities for high-frequency soft magnetic films. Based on the requirements of onchip power inductors, we first review the advantages and limitations of three types of magnetic core films: permalloy, ·Co-based amorphous metallic films, and FeCo-based nanogranular composite films, with a focus on the technical requirements and challenges posed by several μm-thick laminated magnetic core films. Secondly, almost all on-chip inductors are hard-axis excited, meaning that the field of inductors should be parallel to the hard axis of the magnetic core. We thus compare the characteristics of two types of large-area film fabrication methods, i.e. applying in-situ magnetic field and oblique sputtering, both of which can effectively induce in-plane uniaxially magnetic anisotropy (IPUMA). Their impacts on the static and high-frequency soft magnetic properties are also compared. The influence of film patterning on the domain structures and highfrequency magnetic losses of magnetic cores, as well as corresponding countermeasures, are also briefly analyzed. Furthermore, the temperature stability of magnetic permeability and anisotropy of magnetic core films is discussed from the perspectives of process compatibility and long-term reliability. Although the Curie temperature and crystallization temperature of the three types of magnetic core films are relatively high, the upper limits of their actual process temperatures are affected by the thermal effects on the alignment of magnetic atomic pairs, microstructural defects, and grain size. Finally, the current bottlenecks in testing high-frequency and large-signal magnetic losses of magnetic core films are addressed, and potential technical approaches for achieving magnetic core films that meet the future demands of on-chip power inductors for higher saturation current and lower magnetic losses are outlined.
  • [1]

    Burton E A, Schrom G, Paillet F, Douglas J, Lambert W J, Radhakrishnan K, Hill M J 2014 Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014 Fort Worth, TX, USA, 2014 p432-439.

    [2]

    Sankarasubramanian M, Radhakrishnan K, Min Y, Lambert W, Hill M J, Dani A, Mesch R, Wojewoda L, Chavarria J, Augustine A 2020 Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) Orlando, FL, USA, 2020 p399-404.

    [3]

    Bharath K, Radhakrishnan K, Hill M J, Chatterjee P, Hariri H, Venkataraman S, Do H T, Wojewoda L, Srinivasan S 2021 Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) San Diego, CA, USA, 2021 p1286-1292.

    [4]

    Dennard R H, Gaensslen F H, Yu H N, Rideout V L, Bassous E, Leblanc A R 1999 Proc. IEEE 87 668.

    [5]

    Kim W, Gupta M S, Wei G Y, Brooks D 2008 Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture Salt Lake City, UT, USA, 2008 p123-134.

    [6]

    Gunawardane K, Kularatna N 2018 IET Power Electron. 11 229.

    [7]

    Chyan T Y, Ramiah H, Hatta S F W M, Lai N S, Lim C C, Chen Y, Mak P I, Martins R P 2022 IEEE Access 10 114469.

    [8]

    De Souza A F, Tofoli F L, Ribeiro E R 2021 Energies 14 2231.

    [9]

    Barzegarkhoo R, Forouzesh M, Lee S S, Blaabjerg F, Siwakoti Y P 2022 IEEE Trans. Power Electron. 37 11209.

    [10]

    Peng H, Wang J, Liu Z, Gao J, Wang X, Li J, He Y, Wei J, Xie Y 2024 Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia) Chengdu, China, 2024 p1629-1633.

    [11]

    Bellaredj M L F, Davis A K, Kohl P, Swaminathan M 2019 IEEE J. Emerg. Sel. Top. Power Electron.‌ 8 2682.

    [12]

    Schaef C, Salus T, Rayess R, Kulasekaran S, Manusharow M, Radhakrishnan K, Douglas J 2022 Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, 2022 p1-3.

    [13]

    Choi B, Baek J, Marin B C, Qu S, Kulasekaran S, Chavarria J I, Wojewoda L E, Radhakrishnan K 2024 Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC) Denver, CO, USA, 2024 p1044-1047.

    [14]

    Wang N G, Doris B B, Shehata A B, O'sullivan E J, Brown S L, Rossnagel S, Ott J, Gignac L, Massouras M, Romankiw L T 2016 Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, 2016 p35.33. 31-35.33. 34.

    [15]

    Lambert W J, Hill M J, O'brien K P, Radhakrishnan K, Fischer P 2019 IEEE Trans. Power Electron. 35 6208.

    [16]

    He Y H, Zhang Z P, Wu R X, Guo W, Zhang H W, Bai F M 2020 Solid-State Electron. 164 107699.

    [17]

    He Y H, Wu R X, Zhong Z Y, Zhang H W, Bai F M 2021 IEEE Trans. Electron Devices 68 6292.

    [18]

    Herget P, Wang N, O'sullivan E J, Webb B C, Romankiw L T, Fontana R, Decad G, Gallagher W J 2013 IEEE Trans. Magn. 49 4137.

    [19]

    Gardner D S, Schrom G, Hazucha P, Paillet F, Karnik T, Borkar S, Saulters J, Owens J, Wetzel J 2006 Proceedings of the 2006 International Electron Devices Meeting San Francisco, CA, USA, 2006 p1-4.

    [20]

    Gardner D S, Schrom G, Hazucha P, Paillet F, Karnik T, Borkar S, Hallstein R, Dambrauskas T, Hill C, Linde C 2008 J. Appl. Phys. 103 07E927.

    [21]

    Takamura Y, Nitta H, Kawahara K, Kaneko T, Ishido R, Miyazaki T, Hosoda N, Fujisaki K, Nakagawa S 2023 IEEE Trans. Magn. 59 2801204.

    [22]

    Sturcken N, Davies R, Wu H, Lekas M, Shepard K, Cheng K, Chen C, Su Y, Tsai C, Wu K 2015 Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM) Washington, DC, USA, 2015 p11.4. 1-11.4. 4.

    [23]

    Wu H, Lekas M, Davies R, Shepard K L, Sturcken N 2016 IEEE Trans. Magn. 52 8401204.

    [24]

    Li H W, Zhu K Y, Lei K B, Xu T T, Wu H X 2022 IEEE Trans. Power Electron. 37 10075.

    [25]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 eaao0195.

    [26]

    Li Q, Liu X, Wang H, Lan Z, Zhang K, Wu C, Liu P, Jiang X, Sun K, Yu Z 2025 Ceram. Int. 51 20813.

    [27]

    Islam R A, Jiang J, Bai F, Viehland D, Priya S 2007 Appl. Phys. Lett. 91 162905.

    [28]

    Ying Y, Chen G, Li Z C, Zheng J W, Yu J, Qiao L, Li W C, Li J, Wakiya N, Yamaguchi M, Che S L 2025 J. Am. Ceram. Soc. 108 e20137.

    [29]

    Http://Www.Hitachi-Metals.Co.Jp/E/Products/Elec/Tel/P02_21.Html.

    [30]

    Shen W, Wang F, Boroyevich D S, Tipton C W 2008 IEEE Trans. Power Electron. 23 475.

    [31]

    Snoek J L 1948 Physica 14 207.

    [32]

    Acher O, Adenot A L 2000 Phys. Rev. B 62 11324.

    [33]

    Deng L J, Zhou P H 2009 J. Univ. Electron. Sci. Technol. China 38 531 (in Chinese) [邓龙江,周佩珩 2009 电子科技大学学报 38 531].

    [34]

    Xue D S, Li F S, Fan X L, Wen F S 2008 Chin. Phys. Lett. 25 4120.

    [35]

    He Y H, Wang Y C, Zhong Z Y, Zhang H W, Bai F M 2018 IEEE Trans. Magn. 54 2800905.

    [36]

    Kim S G, Yun E J, Kim J Y, Kim J, Cho K 2001 J. Appl. Phys. 90 3533.

    [37]

    Anthony R, Hegarty M, O'brien J, Rohan J F, Mathúna C Ó 2016 IEEE Magn. Lett. 8 5103304.

    [38]

    Jordan D, Wei G, Ye L, Lordan D, Podder P, Masood A, Rodgers K, Mathúna C Ó, Mccloskey P 2020 IEEE J. Emerg. Sel. Top. Power Electron.‌ 9 102.

    [39]

    Deng S G, Bhatnagar S, He S, Ahmad N, Rahaman A, Gao J R, Narang J, Khalifa I, Nag A 2022 Nanomaterials 12 3284.

    [40]

    Cheng C, Davies R, Sturcken N, Shepard K, Bailey W E 2013 J. Appl. Phys. 113 17A343.

    [41]

    Xu X L, Feng G N, Peng W L, Teng J, Han G, Guo R S, Xiong X D, He X, Luo J F, Feng C 2020 AIP Adv. 10 065109.

    [42]

    Jordan D, Wei G, Masood A, O'mathuna C, Mccloskey P 2020 J. Appl. Phys. 128 093902.

    [43]

    Wu Y Z, Yeng I, Yu H B 2021 AIP Adv. 11 025139.

    [44]

    Li C Z, Jiang C J, Chai G Z 2021 Chin. Phys. B 30 037502.

    [45]

    Zhang W H, Zhou G Y, Gao Q, Jia W, Chen X M, Huang B X, Feng L, He W, Wang C, Zhu Y K 2022 IEEE Trans. Electron Devices 69 5116.

    [46]

    Sturcken N, Sullivan E J O, Wang N, Herget P, Webb B C, Romankiw L T, Petracca M, Davies R, Fontana R E, Decad G M, Kymissis I, Peterchev A V, Carloni L P, Gallagher W J, Shepard K L 2013 IEEE J. Solid-State Circuit 48 244.

    [47]

    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K 1998 Nature 392 796.

    [48]

    Osaka T 2000 Electrochim. Acta 45 3311.

    [49]

    Kim Y M, Choi D, Han S H, Kim H J 2001 Proceedings of the 6th Korean-Polish Joint Seminar on Physical Properties of Magnetic Materials Bedlewo, Poland, Jun 12-15, 2001 p12-16.

    [50]

    Kim Y M, Choi D, Kim S R, Kim K H, Kim J, Han S H, Kim H J 2001 J. Magn. Magn. Mater. 226 1507.

    [51]

    Gardner D S, Schrom G, Paillet F, Jamieson B, Karnik T, Borkar S 2009 IEEE Trans. Magn. 45 4760.

    [52]

    Davies R P, Cheng C, Sturcken N, Bailey W E, Shepard K L 2013 IEEE Trans. Magn. 49 4009.

    [53]

    Xu X L, Feng G N, Liu J T, Zhu R G, Yang X Y, Liu M C, Xiong X D, He X, Luo J F, Feng C, Yu G H 2020 J. Appl. Phys. 128 165303.

    [54]

    Wang Y C, Wang L, Zhang H W, Zhong Z Y, Peng D L, Ye F, Bai F M 2016 J. Alloy. Compd. 667 229.

    [55]

    Wang Y C, Zhang H W, Wang L, Zhong Z Y, Bai F M 2014 IEEE Trans. Magn. 50 2007504.

    [56]

    Wang Y C, Zhang H W, Wang L, Bai F M 2014 J. Appl. Phys. 115 17A306.

    [57]

    Grimaldi C 2014 Phys. Rev. B 89 214201.

    [58]

    Kuo Y M, Lee C C, Duh J G 2010 Appl. Surf. Sci. 256 6437.

    [59]

    Lu G D, Zhang H W, Xiao J Q, Bai F M, Tang X L, Li Y X, Zhong Z Y 2011 J. Appl. Phys. 109 07A327.

    [60]

    Gao Y, Lu J, Han G 2015 Physica B 458 40.

    [61]

    Zheng F, Han Z, Li S, Ma Z, Gao H 2022 Appl. Phys. A-Mater. Sci. Process. 128 253.

    [62]

    Lu G, Huang X, Piao H, Pan L 2016 J. Alloy. Compd. 668 107.

    [63]

    Ohnuma S, Ohnuma M, Fujimori H, Masumoto T 2007 J. Magn. Magn. Mater. 310 2503.

    [64]

    Liu Y, Tan C Y, Liu Z W, Ong C K 2007 Appl. Phys. Lett. 90 112506.

    [65]

    Kobayashi N, Masumoto H, Takahashi S, Maekawa S 2014 Nat. Commun. 5 4417.

    [66]

    Cao Y, Kobayashi N, Ohnuma S, Masumoto H 2021 Appl. Phys. Lett. 118 032901.

    [67]

    Lu G D, Zhang H W, Xiao J Q, Tang X L, Xie Y S, Zhong Z Y 2011 J. Appl. Phys. 109 07A308.

    [68]

    Chai G Z, Phuoc N N, Ong C K 2013 Appl. Phys. Lett. 103 042412.

    [69]

    Zhang B M, Wang G W, Zhang F, Xiao Y H, Ge S H 2009 Appl. Phys. A 97 657.

    [70]

    Yang F F, Yan S S, Yu M X, Kang S S, Dai Y Y, Chen Y X, Pan S B, Zhang J L, Bai H L, Zhu D P 2013 J. Alloy. Compd. 558 91.

    [71]

    Pan L L, Wang F L, Wang W F, Chai G Z, Xue D S 2016 Sci Rep 6 21327.

    [72]

    Park S J, Liu C-H, Kim H S, Park N J, Jin S, Han J H 2015 Thin Solid Films 594 178.

    [73]

    Lin P C, Cheng C Y, Yeh J W, Chin T S 2016 Entropy 18 308.

    [74]

    Yu J, Arasu M A, Wickramanayaka S 2016 Proceedings of the 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC) Singapore, 2016 p658-661.

    [75]

    Falub C V, Rohrmann H, Bless M, Meduňa M, Marioni M, Schneider D, Richter J H, Padrun M 2017 AIP Adv. 7 056414.

    [76]

    Queitsch U, Mccord J, Neudert A, Schäfer R, Schultz L, Rott K, Brückl H 2006 J. Appl. Phys. 100 093911.

    [77]

    Mozooni B, Von Hofe T, Mccord J 2014 Phys. Rev. B 90 054410.

    [78]

    Wu H, Hu W B, Wu Y T, Jia Y N, Wang W, Yang Q H, Bai F M 2025 IEEE Sens. J. 25 19062.

    [79]

    Kittmann A, Müller C, Durdaut P, Thormählen L, Schell V, Niekiel F, Lofink F, Meyners D, Knöchel R, Höft M J S, McCord J, Quandt E 2020 Sensor Actuat. A 311 111998.

    [80]

    Guan P, Liu Y H, Guo Y C 1989 Acta Phys. Sin. 38 2029 (in Chinse) [关鹏,刘宜华,郭贻诚 1989 物理学报 38 2029].

    [81]

    Hoshi Y, Kazama H, Naoe M, Yamanaka S I 1983 IEEE Trans. Magn. 19 1958.

    [82]

    Phuoc N N, Ong C 2013 Adv. Mater. 25 980.

    [83]

    Phuoc N N, Ong C K 2014 IEEE Trans. Magn. 50 2102306.

    [84]

    Wang C, Zhang Y, Zhang P, Rong Y, Hsu T 2008 J. Magn. Magn. Mater. 320 683.

    [85]

    Kim D Y, Yoon S S, Rao B P, Kim C, Kim K H, Takahashi M 2008 IEEE Trans. Magn. 44 3115.

  • [1] 陈震, 兰明迪, 李国建, 孙尚, 刘诗莹, 王强. 高软磁低电导率Fe-Fe3N薄膜的N原子含量调控. 物理学报, doi: 10.7498/aps.72.20221577
    [2] 王文彪, 吴鹏, 乔亮, 吴伟, 涂成发, 杨晟宇, 李发伸. γ'-Fe4N软磁复合材料的磁性及损耗特性. 物理学报, doi: 10.7498/aps.72.20222352
    [3] 魏浩, 孙凤举, 呼义翔, 邱爱慈. 欠匹配型磁绝缘感应电压叠加器次级阻抗优化方法. 物理学报, doi: 10.7498/aps.66.208401
    [4] 滕晨晨, 周雯, 庄煜阳, 陈鹤鸣. 基于磁光子晶体的低损耗窄带THz滤波器. 物理学报, doi: 10.7498/aps.65.024210
    [5] 张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森. 基于交换作用的纳磁逻辑电路片上时钟结构研究. 物理学报, doi: 10.7498/aps.63.227503
    [6] 陈代兵, 张运俭, 张北镇, 王冬, 秦奋, 文杰, 金晓, 吴勇, 于爱民. 磁绝缘线振荡器阴极烧蚀与电压波形的关系研究. 物理学报, doi: 10.7498/aps.62.012901
    [7] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, doi: 10.7498/aps.62.057501
    [8] 陈代兵, 王冬, 秦奋, 文杰, 金晓, 安海狮, 张新凯. 磁绝缘线振荡器的起振电压与注入电压关系的分析. 物理学报, doi: 10.7498/aps.61.012901
    [9] 郭光华, 张光富, 王希光. 反铁磁耦合硬磁-软磁-硬磁三层膜体系的不可逆交换弹性反磁化过程. 物理学报, doi: 10.7498/aps.60.107503
    [10] 王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林. Al-O,C元素添加对FeCo合金薄膜磁性和频率特性的影响. 物理学报, doi: 10.7498/aps.60.017505
    [11] 马 强, 江建军, 别少伟, 杜 刚, 冯则坤, 何华辉. CoFeB/MgO不连续多层纳米软磁薄膜微波电磁特性. 物理学报, doi: 10.7498/aps.57.6577
    [12] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, doi: 10.7498/aps.56.3539
    [13] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, doi: 10.7498/aps.54.3851
    [14] 刘才明. 磁脉冲压缩器在卤化铜激光器上的应用. 物理学报, doi: 10.7498/aps.52.1818
    [15] 邵元智, 林光明, 蓝图, 钟伟荣. 基于交换耦合模型纳米双相(硬磁/软磁)自旋体系的磁性. 物理学报, doi: 10.7498/aps.51.2362
    [16] 郑代顺, 谢天, 白建民, 魏福林, 杨正. 射频溅射FeTaN纳米晶软磁薄膜结构和磁性. 物理学报, doi: 10.7498/aps.51.908
    [17] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗. 物理学报, doi: 10.7498/aps.50.1359
    [18] 王晓辉, 金新, 姚希贤. 大涨落作用下损耗模式RF-SQUID磁通跃迁性质的研究. 物理学报, doi: 10.7498/aps.40.1689
    [19] 张文兴, 程先安, 王绪威, 王荫君. 非晶态软磁薄膜Fe90-xCoxZr10的平面霍耳效应和磁阻效应. 物理学报, doi: 10.7498/aps.36.945
    [20] 理论物理专业1972级教育革命小分队, (试验厂)三车间科研组. 交直流叠加磁化下恒导磁薄片的反常涡流损耗. 物理学报, doi: 10.7498/aps.25.105
计量
  • 文章访问数:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回