搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型稳定SmCo12结构预测和磁性研究

戴渝东 刘译聪 李振庆 杨志雄 张卫兵

引用本文:
Citation:

新型稳定SmCo12结构预测和磁性研究

戴渝东, 刘译聪, 李振庆, 杨志雄, 张卫兵

Prediction and Magnetic Study of a New Stable SmCo12 Structure

DAI Yudong, LIU Yicong, LI Zhenqing, YANG Zhixiong, ZHANG Weibing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • SmCo12磁能积大,是当前备受关注的一种极具应用潜力的高温永磁体,但该体系普遍存在的ThMn12型晶体结构面临严峻的稳定性挑战,严重制约其实际工程应用。探索兼具稳定性和优良磁性能的SmCo12新结构是突破这一瓶颈的关键。本文采用局域粒子群优化算法结合第一性原理计算,系统探索了SmCo12体系的亚稳相。理论计算发现了一种六方相结构(空间群 $P \overline{3} 1 m$),其形成能较传统ThMn12型SmCo12低90 meV/atom。声子谱和分子动力学模拟也证实其具有动力学和热力学稳定性。此外,理论预测六方相SmCo12结构表现出非常优异的磁性能,最大磁能积、各向异性场以及居里温度可达54.56 MGOe、15.01 MA/m以及1180 K。本文新发现的六方相SmCo12为解决ThMn12型结构的稳定性难题提供了新方向。
    SmCo12, with its large magnetic energy product, is a highly promising high-temperature permanent magnet that has attracted significant attention. However, the widespread ThMn12-type crystal structure in this system faces serious stability issues, which significantly hinder its practical engineering applications. Exploring novel SmCo12 structures that combine stability and excellent magnetic properties is crucial for overcoming this bottleneck. In this study, we systematically investigated the metastable phases of the SmCo12 system using a local particle swarm optimization algorithm combined with first-principles calculations. Theoretical calculations revealed a hexagonal phase structure (space group $P \overline{3} 1 m$) with a formation energy 90 meV/atom lower than that of the conventional ThMn12-type SmCo12. Its phonon spectrum shows no imaginary frequencies and its structure remains stable during Nosé-Hoover thermostat simulations at 1200 K, confirming its dynamic stability and thermodynamic stability. The electronic structure reveals this structureexhibits metallic characteristics, with a total magnetic moment as high as 21.81 µB/f.u. and a magnetocrystalline anisotropy constant up to 11.10 MJ/m3, significantly surpassing those of similar high-cobalt-content Sm-Co systems. Furthermore, theoretical predictions indicate that the hexagonal phase SmCo12 structure exhibits exceptionally outstanding magnetic properties, with maximum energy product, anisotropy field, and Curie temperature reaching 54.56 MGOe, 15.01 MA/m, and 1180 K, respectively. The newly discovered hexagonal SmCo12 phase provides a novel direction for addressing the stability issues of the ThMn12-type structure.
  • [1]

    Matsuura Y 2006J. Magn. Magn. Mater. 303 344

    [2]

    Coey J M D, Sun H 1990J. Magn. Magn. Mater. 87 L251

    [3]

    Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967J. Appl. Phys. 38 1001

    [4]

    Ojima T, Tomizawa S, Yoneyama T, Hori T 1977Jpn. J. Appl. Phys. 16 671

    [5]

    Liu J F, Ding Y, Hadjipanayis G C 1999J. Appl. Phys. 85 1670

    [6]

    Tian M B 2001Magnetic Materials (Beijing: Tsinghua University Press) p80(in Chinese) [田民波2001磁性材料(北京: 清华大学出版社) 第80页]

    [7]

    Coey J M D 2020Engineering 6 119

    [8]

    Liu S 2019Chin. Phys. B 28 017501

    [9]

    Yang Y C, Kebe B, James W J, Deportes J, Yelon W 1981J. Appl. Phys. 52 2077

    [10]

    Yang Y C 1981Acta Metall. Sin. 17 355(in Chinese) [杨应昌1981金属学报17355]

    [11]

    Felner I, Nowik I, Seh M 1983J. Magn. Magn. Mater. 38 172

    [12]

    Ohashi K, Tawara Y, Osugi R, Shimao M 1988J. Appl. Phys. 64 5714

    [13]

    Harashima Y, Terakura K, Kino H, Ishibashi S, Miyake T 2016J. Appl. Phys. 120 203904

    [14]

    Hirayama Y, Takahashi Y K, Hirosawa S, Hono K 2017Scr. Mater. 138 62

    [15]

    Matsumoto M, Hawai T, Ono K 2020Phys. Rev. Appl. 13 064028

    [16]

    Sun J Q, Wu X C, Que Z X, Zhang W B 2023Acta Phys. Sinica 72 180202(in Chinese) [孙敬淇, 吴绪才, 阙志雄, 张卫兵2023物理学报72 180202]

    [17]

    Wang Y, Lv J, Zhu L, Ma Y 2010Phys. Rev. B 82 094116

    [18]

    Wang Y, Lv J, Gao P, Ma Y 2022Acc. Chem. Res. 55 2068

    [19]

    Kresse G, Furthmüller J 1996Comput. Mater. Sci 6 15

    [20]

    Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169

    [21]

    Kresse G, Hafner J 1993Phys. Rev. B 47 558

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865

    [23]

    Kresse G, Joubert D 1999Phys. Rev. B 59 1758

    [24]

    Larson P, Mazin I I, Papaconstantopoulos D A 2003Phys. Rev. B 67 214405

    [25]

    Togo A, Chaput L, Tadano T, Tanaka I 2023J. Phys.: Condens. Matter 35 353001

    [26]

    Ozaki T, Kino H 2005Phys. Rev. B 72045121

    [27]

    Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987J. Magn. Magn. Mater. 67 65

    [28]

    Ozaki T 2003Phys. Rev. B 67 155108

    [29]

    Gong Q, Yi M, Evans R F L, Xu B X, Gutfleisch O 2019Phys. Rev. B 99 214409

    [30]

    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014J. Phys.: Condens. Matter 26 103202

    [31]

    Skubic B, Hellsvik J, Nordström L, Eriksson O 2008J. Phys.: Condens. Matter 20 315203

    [32]

    Toga Y, Matsumoto M, Miyashita S, Akai H, Doi S, Miyake T, Sakuma A 2016Phys. Rev. B 94 174433

    [33]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018npj Comput. Mater. 4 47

    [34]

    Fu C L, Ho K M 1983Phys. Rev. B 28 5480

    [35]

    Erdmann S, Klüner T, Sözen H İ 2023J. Magn. Magn. Mater. 572 170645

    [36]

    Yu J, Jiang S, Sun D, Lin P, Zhang Y 2022J. Mater. Res. Technol. 18 3410

    [37]

    Yuan Y, Yi J, Borzone G, Watson A 2011Calphad 35 416

    [38]

    Landa A, Söderlind P, Moore E E, Perron A 2022Appl. Sci. 12 4860

    [39]

    O’Handley R C 1999Modern magnetic materials: principles and applications (New York: Wiley) p480

    [40]

    McGlynn E 2013Contemp. Phys. 54 115

    [41]

    Skomski R. 2016Novel Functional Magnetic Materials (Cham: Springer) p359

    [42]

    Buschow K H J 1977Rep. Prog. Phys. 40 1179

    [43]

    Ochirkhuyag T, Hong S C, Odkhuu D 2022npj Comput. Mater. 8 193

    [44]

    Körner W, Krugel G, Elsässer C 2016Sci. Rep. 6 24686

    [45]

    Kronmüller H 1987Phys. Status Solidi B 144 385

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231436
    [3] 彭毅, 赵国强, 邓正, 靳常青. 面向应用的新一代稀磁半导体研究进展. 物理学报, doi: 10.7498/aps.73.20231940
    [4] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [6] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220853
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [8] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210227
    [9] 邓正, 赵国强, 靳常青. 自旋和电荷分别掺杂的新一类稀磁 半导体研究进展. 物理学报, doi: 10.7498/aps.68.20191114
    [10] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, doi: 10.7498/aps.68.20190222
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [12] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.036105
    [13] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2836
    [14] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2051
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.515
    [16] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.57.2368
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, doi: 10.7498/aps.57.4428
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  46
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-11

/

返回文章
返回