-
SmCo12磁能积大, 是当前备受关注的一种极具应用潜力的高温永磁体, 但该体系普遍存在的ThMn12型晶体结构面临严峻的稳定性挑战, 严重制约其实际工程应用. 探索兼具稳定性和优良磁性能的SmCo12新结构是突破这一瓶颈的关键. 本文采用局域粒子群优化算法结合第一性原理计算, 系统探索了SmCo12体系的亚稳相. 理论计算发现了一种六方相结构(空间群 $ P\overline{3}1m $), 其形成能较传统ThMn12型SmCo12低90 meV/atom. 声子谱和分子动力学模拟也证实其具有动力学和热力学稳定性. 此外, 理论预测六方相SmCo12结构表现出非常优异的磁性能, 最大磁能积、各向异性场以及居里温度可达54.56 MGOe (1 Oe = 79.577 A/m), 15.01 MA/m和1180 K. 本文新发现的六方相SmCo12为解决ThMn12型结构的稳定性难题提供了新方向.SmCo12, with its large magnetic energy product, is a highly promising high-temperature permanent magnet that has attracted significant attention. However, the widely existing ThMn12-type crystal structure in this system faces serious stability problem, which significantly hinders its practical engineering applications. Exploring a novel SmCo12 structure that combines stability and excellent magnetic properties is crucial for breaking through this bottleneck. In this study, the metastable phases of the SmCo12 system are systematically investigated in this work by using a local particle swarm optimization algorithm combined with first-principles calculations. The theoretical calculations reveal a hexagonal phase structure (space group $ P\overline{3}1m $) with a formation energy of 90 meV/atom, which is lower than that of the conventional ThMn12-type SmCo12. Its phonon spectrum shows no imaginary frequencies and its structure remains stable during Nosé-Hoover thermostat simulations at 1200 K, confirming its dynamic stability and thermodynamic stability. The electronic structure reveals that this structure exhibits metallic characteristics, with a total magnetic moment of as high as 21.81µB/f.u. and a magnetocrystalline anisotropy constant of up to 11.10 MJ/m3, significantly exceeding similar high-cobalt-content Sm-Co systems. Furthermore, theoretical predictions indicate that the hexagonal phase SmCo12 structure exhibits exceptionally outstanding magnetic properties, with maximum energy product, anisotropy field, and Curie temperature reaching 54.56 MGOe, 15.01 MA/m, and 1180 K, respectively. The newly discovered hexagonal SmCo12 phase provides a novel direction for solving the stability problem of the ThMn12-type structure.
-
Keywords:
- structure prediction /
- first principles calculations /
- high Curie temperature /
- rare earth permanent magnets
-
图 1 SmCo12四种候选晶体结构示意图, 红色为Sm原子, 蓝色为Co原子 (a) $ P4 mm $(No.99); (b) $ {P4}/{mmm} $(No.123); (c) ThMn12型$ {I4}/{mmm} $(No.139); (d) $ P\overline{3}1 m $(No.162)
Fig. 1. Four candidate crystal structures of SmCo12, red represents Sm atom, blue represents Co atom: (a) $ P4 mm $(No.99); (b) $ P4/mmm $(No.123); (c) ThMn12-type $ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162).
图 4 候选SmCo12结构声子谱 (a) $ P4 mm $(No.99); (b) $ P4/mmm $(No.123); (c) ThMn12型$ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162)
Fig. 4. The phonon dispersion of candidate SmCo12 structures: (a) $ P4 mm $(No.99); (b) $ P4/mmm $ (No.123); (c) ThMn12-type $ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162).
图 6 六方相($ P\overline{3}1 m $) SmCo12态密度 (a) 总态密度与各元素贡献; (b) Sm原子态密度以及各轨道贡献; (c) 6$ {k}_{1} $晶位Co原子态密度及各轨道贡献; (d) 6$ {k}_{2} $晶位Co原子态密度及各轨道贡献, 费米能级设为0 eV
Fig. 6. The DOS of hexagonal phase ($ P\overline{3}1 m $) SmCo12: (a) The total DOS and the contribution of each element; (b) the Sm atomic DOS and the contribution of each orbital; (c) the Co atomic DOS at 6$ {k}_{1} $ crystal site and the contribution of each orbital; (d) the Co atomic DOS at the 6$ {k}_{2} $ crystal site and the contribution of each orbital. The Fermi level is set to 0 eV.
表 1 候选SmCo12结构的空间群、焓值、晶胞参数和晶系
Table 1. The candidate SmCo12 structures including their space groups, enthalpy values, unit cell parameters, and crystal systems.
Space Group Enthalpy
/(eV·atom–1)Lattice parameters/Å Wyckoff position Crystal system $ P4 mm $ (No.99) –6.52 a = b = 4.00, c = 10.65
α = β = γ = 90°Sm: 1$ a $
Co: 1$ {a}_{i} $; 1$ {b}_{i} $; 2$ {c}_{i} $ (i = 1, 2, 3)Tetragonal $ I4/mmm $ (No.139) –6.67 a = b = 8.89, c = 4.087
α = β = γ = 90°Sm: 2$ a $
Co: 8$ f $; 8$ i $; 8$ j $Tetragonal $ P\overline{3}1 m $ (No.162) –6.76 a = b = 4.20, c = 10.93
α = β = 90°, γ = 120°Sm: 1$ b $
Co: 6$ {k}_{1} $; 6$ {k}_{2} $Hexagonal $ P4/mmm $ (No.123) –6.79 a = b = 3.54, c = 12.13
α = β = γ = 90°Sm: 1$ a $
Co: 2$ {h}_{i} $ (i = 1, 2); 4$ i $; 2$ h $; 2$ e $Tetragonal 表 2 候选SmCo12结构的空间群、平衡状态下的体积、形成能及体积模量
Table 2. The candidate SmCo12 structures include their space groups, equilibrium volumes, formation energies, and bulk modulus.
Space
GroupVolume
/Å3Formation Energy
(meV/atom)Bulk module
/GPa$ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}} $ $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}^{\mathrm{S}\mathrm{m}\mathrm{C}{\mathrm{o}}_{5}} $ $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}^{\mathrm{S}{\mathrm{m}}_{2}\mathrm{C}{\mathrm{o}}_{17}} $ $ P4 mm $
(No.99)173.22 0 63 67 111.00 $ I4/mmm $
(No.139)323.12 –47 16 21 145.50 $ P\overline{3}1 m $
(No.162)172.16 –137 –74 –69 131.99 $ P4/mmm $
(No.123)161.37 –167 –104 –99 154.33 表 3 VASP与OpenMX 计算六方相($ P\overline{3}1 m $$ (\mathrm{N}\mathrm{o}.162) $) SmCo12电子磁矩和单离子磁各向异性能对比
Table 3. A comparison of the electronic magnetic moments and single ion magnetic anisotropy energies of hexagonal ($ P\overline{3}1 m $ (No.162)) SmCo12 calculated by using VASP and OpenMX.
Method Atom s p d $ {m}_{i/\mu \mathrm{B}} $ $ {k}_{i} $/meV OpenMX Co 6$ {k}_{1} $ –0.01 –0.08 1.74 1.66 0.19 Co 6$ {k}_{2} $ 0.0 –0.06 1.84 1.76 0.46 Sm 1$ b $ –0.01 –0.04 1.29 1.25 –11.97 VASP Co 6$ {k}_{1} $ –0.02 –0.05 1.67 1.60 0.57 Co 6$ {k}_{2} $ –0.01 –0.04 1.57 1.52 0.4 Sm 1$ b $ –0.01 –0.01 –0.21 –0.23 –8.93 表 4 六方相($ P\overline{3}1 m $)SmCo12结构自旋磁矩和轨道磁矩
Table 4. Spin magnetic moments and orbital magnetic moments of the hexagonal phase ($ P\overline{3}1 m $) SmCo12 structure.
Atoms Occ. $ {m}_{i}^{s}/{\mu }_{B} $ $ {m}_{i}^{\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}}/{\mu }_{B} $ $ {m}_{i}/{\mu }_{B} $ Co 6$ {k}_{1} $ 1.66 0.07 1.73 Co 6$ {k}_{2} $ 1.76 0.08 1.84 Sm 1$ b $ 1.25 0.02 1.27 表 5 六方相($ P\overline{3}1 m $(No.162)) SmCo12本征磁性与ThMn12型对比
Table 5. Comparison of intrinsic magnetism between hexagonal($ P\overline{3}1 m $(No.162)) SmCo12 and ThMn12-type structure.
Space Group $ {m}^{\mathrm{t}\mathrm{o}\mathrm{t}}/ $($ {\mathrm{\mu }}_{\mathrm{B}} $·f.u.–1) $ {M}_{\mathrm{s}}/ $(MA·m–1) $ (\mathrm{B}\mathrm{H}{)}_{\mathrm{m}\mathrm{a}\mathrm{x}}/ $MGOe $ {H}_{\mathrm{a}}/ $(MA·m–1) $ {T}_{\mathrm{C}}/ $K $ P\overline{3}1 m $ (No.162) SmCo12 21.81 1.17 54.56 15.01 1180 ThMn12-type SmCo12 * 21.90 1.26 62.38 8.70 1150 ThMn12-type SmCo12 [15,38,40,41] 17.4 1.0 39.60 3.91 1300 ThMn12-type SmFe12 [38,41,44] 25.7 1.30 76.0 9.55 554 ThMn12-type Sm(Fe0.8Co0.2)12 [15,43] 24.5 1.35 80 9.55 1100 注: *present work. -
[1] Matsuura Y 2006 J. Magn. Magn. Mater. 303 344
Google Scholar
[2] Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251
Google Scholar
[3] Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967 J. Appl. Phys. 38 1001
Google Scholar
[4] Ojima T, Tomizawa S, Yoneyama T, Hori T 1977 Jpn. J. Appl. Phys. 16 671
Google Scholar
[5] Liu J F, Ding Y, Hadjipanayis G C 1999 J. Appl. Phys. 85 1670
Google Scholar
[6] 田民波 2001 磁性材料 (北京: 清华大学出版社) 第80页
Tian M B 2001 Magnetic Materials (Beijing: Tsinghua University Press) p80
[7] Coey J M D 2020 Engineering 6 119
Google Scholar
[8] Liu S 2019 Chin. Phys. B 28 017501
Google Scholar
[9] Yang Y C, Kebe B, James W J, Deportes J, Yelon W 1981 J. Appl. Phys. 52 2077
Google Scholar
[10] 杨应昌 1981 金属学报 17 355
Yang Y C 1981 Acta Metall. Sin. 17 355
[11] Felner I, Nowik I, Seh M 1983 J. Magn. Magn. Mater. 38 172
Google Scholar
[12] Ohashi K, Tawara Y, Osugi R, Shimao M 1988 J. Appl. Phys. 64 5714
Google Scholar
[13] Harashima Y, Terakura K, Kino H, Ishibashi S, Miyake T 2016 J. Appl. Phys. 120 203904
Google Scholar
[14] Hirayama Y, Takahashi Y K, Hirosawa S, Hono K 2017 Scr. Mater. 138 62
Google Scholar
[15] Matsumoto M, Hawai T, Ono K 2020 Phys. Rev. Appl. 13 064028
Google Scholar
[16] 孙敬淇, 吴绪才, 阙志雄, 张卫兵 2023 物理学报 72 180202
Google Scholar
Sun J Q, Wu X C, Que Z X, Zhang W B 2023 Acta Phys. Sin. 72 180202
Google Scholar
[17] Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116
Google Scholar
[18] Wang Y C, Lv J, Gao P Y, Ma Y M 2022 Acc Chem. Res. 55 2068
Google Scholar
[19] Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15
Google Scholar
[20] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[21] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
Google Scholar
[22] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[23] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[24] Larson P, Mazin I I, Papaconstantopoulos D A 2003 Phys. Rev. B 67 214405
Google Scholar
[25] Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. Condens. Matter 35 353001
Google Scholar
[26] Ozaki T, Kino H 2005 Phys. Rev. B 72 045121
Google Scholar
[27] Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
Google Scholar
[28] Ozaki T 2003 Phys. Rev. B 67 155108
Google Scholar
[29] Gong Q, Yi M, Evans R F L, Xu B X, Gutfleisch O 2019 Phys. Rev. B 99 214409
Google Scholar
[30] Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. : Condens. Matter 26 103202
Google Scholar
[31] Skubic B, Hellsvik J, Nordström L, Eriksson O 2008 J. Phys. : Condens. Matter 20 315203
Google Scholar
[32] Toga Y, Matsumoto M, Miyashita S, Akai H, Doi S, Miyake T, Sakuma A 2016 Phys. Rev. B 94 174433
Google Scholar
[33] Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 npj Comput. Mater. 4 47
Google Scholar
[34] Fu C L, Ho K M 1983 Phys. Rev. B 28 5480
Google Scholar
[35] Erdmann S, Klüner T, Sözen H İ 2023 J. Magn. Magn. Mater. 572 170645
Google Scholar
[36] Yu J B, Jiang S Y, Sun D, Lin P, Zhang Y Q 2022 J. Mater. Res. Technol. 18 3410
Google Scholar
[37] Yuan Y, Yi J H, Borzone G, Watson A 2011 Calphad 35 416
Google Scholar
[38] Landa A, Söderlind P, Moore E E, Perron A 2022 Appl. Sci. 12 4860
Google Scholar
[39] O’Handley R C 1999 Modern magnetic materials: principles and applications (New York: Wiley) p480
[40] McGlynn E 2013 Contemp. Phys. 54 115
Google Scholar
[41] Skomski R. 2016 Novel Functional Magnetic Materials (Cham: Springer) p359
[42] Buschow K H J 1977 Rep. Prog. Phys. 40 1179
Google Scholar
[43] Ochirkhuyag T, Hong S C, Odkhuu D 2022 npj Comput. Mater. 8 193
Google Scholar
[44] Körner W, Krugel G, Elsässer C 2016 Sci. Rep. 6 24686
Google Scholar
[45] Kronmüller H 1987 Phys. Status Solidi B 144 385
Google Scholar
计量
- 文章访问数: 316
- PDF下载量: 7
- 被引次数: 0