搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型稳定SmCo12结构预测和磁性

戴渝东 刘译聪 李振庆 杨志雄 张卫兵

引用本文:
Citation:

新型稳定SmCo12结构预测和磁性

戴渝东, 刘译聪, 李振庆, 杨志雄, 张卫兵

Prediction and magnetic study of a new stable SmCo12 structure

DAI Yudong, LIU Yicong, LI Zhenqing, YANG Zhixiong, ZHANG Weibing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • SmCo12磁能积大, 是当前备受关注的一种极具应用潜力的高温永磁体, 但该体系普遍存在的ThMn12型晶体结构面临严峻的稳定性挑战, 严重制约其实际工程应用. 探索兼具稳定性和优良磁性能的SmCo12新结构是突破这一瓶颈的关键. 本文采用局域粒子群优化算法结合第一性原理计算, 系统探索了SmCo12体系的亚稳相. 理论计算发现了一种六方相结构(空间群 $ P\overline{3}1m $), 其形成能较传统ThMn12型SmCo12低90 meV/atom. 声子谱和分子动力学模拟也证实其具有动力学和热力学稳定性. 此外, 理论预测六方相SmCo12结构表现出非常优异的磁性能, 最大磁能积、各向异性场以及居里温度可达54.56 MGOe (1 Oe = 79.577 A/m), 15.01 MA/m和1180 K. 本文新发现的六方相SmCo12为解决ThMn12型结构的稳定性难题提供了新方向.
    SmCo12, with its large magnetic energy product, is a highly promising high-temperature permanent magnet that has attracted significant attention. However, the widely existing ThMn12-type crystal structure in this system faces serious stability problem, which significantly hinders its practical engineering applications. Exploring a novel SmCo12 structure that combines stability and excellent magnetic properties is crucial for breaking through this bottleneck. In this study, the metastable phases of the SmCo12 system are systematically investigated in this work by using a local particle swarm optimization algorithm combined with first-principles calculations. The theoretical calculations reveal a hexagonal phase structure (space group $ P\overline{3}1m $) with a formation energy of 90 meV/atom, which is lower than that of the conventional ThMn12-type SmCo12. Its phonon spectrum shows no imaginary frequencies and its structure remains stable during Nosé-Hoover thermostat simulations at 1200 K, confirming its dynamic stability and thermodynamic stability. The electronic structure reveals that this structure exhibits metallic characteristics, with a total magnetic moment of as high as 21.81µB/f.u. and a magnetocrystalline anisotropy constant of up to 11.10 MJ/m3, significantly exceeding similar high-cobalt-content Sm-Co systems. Furthermore, theoretical predictions indicate that the hexagonal phase SmCo12 structure exhibits exceptionally outstanding magnetic properties, with maximum energy product, anisotropy field, and Curie temperature reaching 54.56 MGOe, 15.01 MA/m, and 1180 K, respectively. The newly discovered hexagonal SmCo12 phase provides a novel direction for solving the stability problem of the ThMn12-type structure.
  • 图 1  SmCo12四种候选晶体结构示意图, 红色为Sm原子, 蓝色为Co原子 (a) $ P4 mm $(No.99); (b) $ {P4}/{mmm} $(No.123); (c) ThMn12型$ {I4}/{mmm} $(No.139); (d) $ P\overline{3}1 m $(No.162)

    Fig. 1.  Four candidate crystal structures of SmCo12, red represents Sm atom, blue represents Co atom: (a) $ P4 mm $(No.99); (b) $ P4/mmm $(No.123); (c) ThMn12-type $ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162).

    图 2  候选SmCo12结构能量随体积变化曲线

    Fig. 2.  Energy-volume curve of candidate SmCo12 structures.

    图 3  二元SmmCon合金形成能及凸包图, 结构搜索候选结构标记为圆点, 稳定结构标记为星号, 亚稳态结构标记为三角形

    Fig. 3.  Formation energy and convex hull of binary SmmCon alloys, candidate structures from structural search are marked as circles, stable structures as stars, and metastable structures as triangles.

    图 4  候选SmCo12结构声子谱 (a) $ P4 mm $(No.99); (b) $ P4/mmm $(No.123); (c) ThMn12型$ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162)

    Fig. 4.  The phonon dispersion of candidate SmCo12 structures: (a) $ P4 mm $(No.99); (b) $ P4/mmm $ (No.123); (c) ThMn12-type $ I4/mmm $(No.139); (d) $ P\overline{3}1 m $(No.162).

    图 5  在1200 K下, 六方相($ P\overline{3}1 m $) SmCo12分子动力学模拟后 (a) 弛豫后晶体结构; (b) 总势能随模拟时间的变化

    Fig. 5.  At 1200 K, for the hexagonal phase ($ P\overline{3}1 m $) SmCo12 after molecular dynamics simulation: (a) Relaxed crystal structure; (b) total potential energy as a function of simulation time.

    图 6  六方相($ P\overline{3}1 m $) SmCo12态密度 (a) 总态密度与各元素贡献; (b) Sm原子态密度以及各轨道贡献; (c) 6$ {k}_{1} $晶位Co原子态密度及各轨道贡献; (d) 6$ {k}_{2} $晶位Co原子态密度及各轨道贡献, 费米能级设为0 eV

    Fig. 6.  The DOS of hexagonal phase ($ P\overline{3}1 m $) SmCo12: (a) The total DOS and the contribution of each element; (b) the Sm atomic DOS and the contribution of each orbital; (c) the Co atomic DOS at 6$ {k}_{1} $ crystal site and the contribution of each orbital; (d) the Co atomic DOS at the 6$ {k}_{2} $ crystal site and the contribution of each orbital. The Fermi level is set to 0 eV.

    图 7  六方相SmCo12 (a) 每个原子间交换耦合常数随间距变化曲线; (b) 随温度变化的磁化曲线

    Fig. 7.  Hexagonal SmCo12: (a) Exchange coupling constants between each atom as a function of interatomic distance; (b) magnetization curve as a function of temperature.

    表 1  候选SmCo12结构的空间群、焓值、晶胞参数和晶系

    Table 1.  The candidate SmCo12 structures including their space groups, enthalpy values, unit cell parameters, and crystal systems.

    Space Group Enthalpy
    /(eV·atom–1)
    Lattice parameters/Å Wyckoff position Crystal system
    $ P4 mm $ (No.99) –6.52 a = b = 4.00, c = 10.65
    α = β = γ = 90°
    Sm: 1$ a $
    Co: 1$ {a}_{i} $; 1$ {b}_{i} $; 2$ {c}_{i} $ (i = 1, 2, 3)
    Tetragonal
    $ I4/mmm $ (No.139) –6.67 a = b = 8.89, c = 4.087
    α = β = γ = 90°
    Sm: 2$ a $
    Co: 8$ f $; 8$ i $; 8$ j $
    Tetragonal
    $ P\overline{3}1 m $ (No.162) –6.76 a = b = 4.20, c = 10.93
    α = β = 90°, γ = 120°
    Sm: 1$ b $
    Co: 6$ {k}_{1} $; 6$ {k}_{2} $
    Hexagonal
    $ P4/mmm $ (No.123) –6.79 a = b = 3.54, c = 12.13
    α = β = γ = 90°
    Sm: 1$ a $
    Co: 2$ {h}_{i} $ (i = 1, 2); 4$ i $; 2$ h $; 2$ e $
    Tetragonal
    下载: 导出CSV

    表 2  候选SmCo12结构的空间群、平衡状态下的体积、形成能及体积模量

    Table 2.  The candidate SmCo12 structures include their space groups, equilibrium volumes, formation energies, and bulk modulus.

    Space
    Group
    Volume
    3
    Formation Energy
    (meV/atom)
    Bulk module
    /GPa
    $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}} $ $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}^{\mathrm{S}\mathrm{m}\mathrm{C}{\mathrm{o}}_{5}} $ $ {E}_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}^{\mathrm{S}{\mathrm{m}}_{2}\mathrm{C}{\mathrm{o}}_{17}} $
    $ P4 mm $
    (No.99)
    173.22 0 63 67 111.00
    $ I4/mmm $
    (No.139)
    323.12 –47 16 21 145.50
    $ P\overline{3}1 m $
    (No.162)
    172.16 –137 –74 –69 131.99
    $ P4/mmm $
    (No.123)
    161.37 –167 –104 –99 154.33
    下载: 导出CSV

    表 3  VASP与OpenMX 计算六方相($ P\overline{3}1 m $$ (\mathrm{N}\mathrm{o}.162) $) SmCo12电子磁矩和单离子磁各向异性能对比

    Table 3.  A comparison of the electronic magnetic moments and single ion magnetic anisotropy energies of hexagonal ($ P\overline{3}1 m $ (No.162)) SmCo12 calculated by using VASP and OpenMX.

    Method Atom s p d $ {m}_{i/\mu \mathrm{B}} $ $ {k}_{i} $/meV
    OpenMX Co 6$ {k}_{1} $ –0.01 –0.08 1.74 1.66 0.19
    Co 6$ {k}_{2} $ 0.0 –0.06 1.84 1.76 0.46
    Sm 1$ b $ –0.01 –0.04 1.29 1.25 –11.97
    VASP Co 6$ {k}_{1} $ –0.02 –0.05 1.67 1.60 0.57
    Co 6$ {k}_{2} $ –0.01 –0.04 1.57 1.52 0.4
    Sm 1$ b $ –0.01 –0.01 –0.21 –0.23 –8.93
    下载: 导出CSV

    表 4  六方相($ P\overline{3}1 m $)SmCo12结构自旋磁矩和轨道磁矩

    Table 4.  Spin magnetic moments and orbital magnetic moments of the hexagonal phase ($ P\overline{3}1 m $) SmCo12 structure.

    AtomsOcc.$ {m}_{i}^{s}/{\mu }_{B} $$ {m}_{i}^{\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}}/{\mu }_{B} $$ {m}_{i}/{\mu }_{B} $
    Co6$ {k}_{1} $1.660.071.73
    Co6$ {k}_{2} $1.760.081.84
    Sm1$ b $1.250.021.27
    下载: 导出CSV

    表 5  六方相($ P\overline{3}1 m $(No.162)) SmCo12本征磁性与ThMn12型对比

    Table 5.  Comparison of intrinsic magnetism between hexagonal($ P\overline{3}1 m $(No.162)) SmCo12 and ThMn12-type structure.

    Space Group $ {m}^{\mathrm{t}\mathrm{o}\mathrm{t}}/ $($ {\mathrm{\mu }}_{\mathrm{B}} $·f.u.–1) $ {M}_{\mathrm{s}}/ $(MA·m–1) $ (\mathrm{B}\mathrm{H}{)}_{\mathrm{m}\mathrm{a}\mathrm{x}}/ $MGOe $ {H}_{\mathrm{a}}/ $(MA·m–1) $ {T}_{\mathrm{C}}/ $K
    $ P\overline{3}1 m $ (No.162) SmCo12 21.81 1.17 54.56 15.01 1180
    ThMn12-type SmCo12 * 21.90 1.26 62.38 8.70 1150
    ThMn12-type SmCo12 [15,38,40,41] 17.4 1.0 39.60 3.91 1300
    ThMn12-type SmFe12 [38,41,44] 25.7 1.30 76.0 9.55 554
    ThMn12-type Sm(Fe0.8Co0.2)12 [15,43] 24.5 1.35 80 9.55 1100
    注: *present work.
    下载: 导出CSV
  • [1]

    Matsuura Y 2006 J. Magn. Magn. Mater. 303 344Google Scholar

    [2]

    Coey J M D, Sun H 1990 J. Magn. Magn. Mater. 87 L251Google Scholar

    [3]

    Strnat K, Hoffer G, Olson J, Ostertag W, Becker J J 1967 J. Appl. Phys. 38 1001Google Scholar

    [4]

    Ojima T, Tomizawa S, Yoneyama T, Hori T 1977 Jpn. J. Appl. Phys. 16 671Google Scholar

    [5]

    Liu J F, Ding Y, Hadjipanayis G C 1999 J. Appl. Phys. 85 1670Google Scholar

    [6]

    田民波 2001 磁性材料 (北京: 清华大学出版社) 第80页

    Tian M B 2001 Magnetic Materials (Beijing: Tsinghua University Press) p80

    [7]

    Coey J M D 2020 Engineering 6 119Google Scholar

    [8]

    Liu S 2019 Chin. Phys. B 28 017501Google Scholar

    [9]

    Yang Y C, Kebe B, James W J, Deportes J, Yelon W 1981 J. Appl. Phys. 52 2077Google Scholar

    [10]

    杨应昌 1981 金属学报 17 355

    Yang Y C 1981 Acta Metall. Sin. 17 355

    [11]

    Felner I, Nowik I, Seh M 1983 J. Magn. Magn. Mater. 38 172Google Scholar

    [12]

    Ohashi K, Tawara Y, Osugi R, Shimao M 1988 J. Appl. Phys. 64 5714Google Scholar

    [13]

    Harashima Y, Terakura K, Kino H, Ishibashi S, Miyake T 2016 J. Appl. Phys. 120 203904Google Scholar

    [14]

    Hirayama Y, Takahashi Y K, Hirosawa S, Hono K 2017 Scr. Mater. 138 62Google Scholar

    [15]

    Matsumoto M, Hawai T, Ono K 2020 Phys. Rev. Appl. 13 064028Google Scholar

    [16]

    孙敬淇, 吴绪才, 阙志雄, 张卫兵 2023 物理学报 72 180202Google Scholar

    Sun J Q, Wu X C, Que Z X, Zhang W B 2023 Acta Phys. Sin. 72 180202Google Scholar

    [17]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [18]

    Wang Y C, Lv J, Gao P Y, Ma Y M 2022 Acc Chem. Res. 55 2068Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Larson P, Mazin I I, Papaconstantopoulos D A 2003 Phys. Rev. B 67 214405Google Scholar

    [25]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. Condens. Matter 35 353001Google Scholar

    [26]

    Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar

    [27]

    Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65Google Scholar

    [28]

    Ozaki T 2003 Phys. Rev. B 67 155108Google Scholar

    [29]

    Gong Q, Yi M, Evans R F L, Xu B X, Gutfleisch O 2019 Phys. Rev. B 99 214409Google Scholar

    [30]

    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. : Condens. Matter 26 103202Google Scholar

    [31]

    Skubic B, Hellsvik J, Nordström L, Eriksson O 2008 J. Phys. : Condens. Matter 20 315203Google Scholar

    [32]

    Toga Y, Matsumoto M, Miyashita S, Akai H, Doi S, Miyake T, Sakuma A 2016 Phys. Rev. B 94 174433Google Scholar

    [33]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 npj Comput. Mater. 4 47Google Scholar

    [34]

    Fu C L, Ho K M 1983 Phys. Rev. B 28 5480Google Scholar

    [35]

    Erdmann S, Klüner T, Sözen H İ 2023 J. Magn. Magn. Mater. 572 170645Google Scholar

    [36]

    Yu J B, Jiang S Y, Sun D, Lin P, Zhang Y Q 2022 J. Mater. Res. Technol. 18 3410Google Scholar

    [37]

    Yuan Y, Yi J H, Borzone G, Watson A 2011 Calphad 35 416Google Scholar

    [38]

    Landa A, Söderlind P, Moore E E, Perron A 2022 Appl. Sci. 12 4860Google Scholar

    [39]

    O’Handley R C 1999 Modern magnetic materials: principles and applications (New York: Wiley) p480

    [40]

    McGlynn E 2013 Contemp. Phys. 54 115Google Scholar

    [41]

    Skomski R. 2016 Novel Functional Magnetic Materials (Cham: Springer) p359

    [42]

    Buschow K H J 1977 Rep. Prog. Phys. 40 1179Google Scholar

    [43]

    Ochirkhuyag T, Hong S C, Odkhuu D 2022 npj Comput. Mater. 8 193Google Scholar

    [44]

    Körner W, Krugel G, Elsässer C 2016 Sci. Rep. 6 24686Google Scholar

    [45]

    Kronmüller H 1987 Phys. Status Solidi B 144 385Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231436
    [2] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [3] 彭毅, 赵国强, 邓正, 靳常青. 面向应用的新一代稀磁半导体研究进展. 物理学报, doi: 10.7498/aps.73.20231940
    [4] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [6] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220853
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [8] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210227
    [9] 邓正, 赵国强, 靳常青. 自旋和电荷分别掺杂的新一类稀磁 半导体研究进展. 物理学报, doi: 10.7498/aps.68.20191114
    [10] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, doi: 10.7498/aps.68.20190222
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [12] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.036105
    [13] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2051
    [14] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2836
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.515
    [16] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.57.2368
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, doi: 10.7498/aps.57.4428
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  316
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-26
  • 修回日期:  2025-06-11
  • 上网日期:  2025-07-11

/

返回文章
返回