搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双波长泵浦的高效率2.8 μm掺铒氟化物光纤激光器 数值分析与优化

李双江 赵红汝 付士杰 张钧翔 张露 姚治东 盛泉 史伟 姚建铨

引用本文:
Citation:

基于双波长泵浦的高效率2.8 μm掺铒氟化物光纤激光器 数值分析与优化

李双江, 赵红汝, 付士杰, 张钧翔, 张露, 姚治东, 盛泉, 史伟, 姚建铨

Numerical analysis and optimization of high-efficiency 2.8 μm erbium-doped fluoride fiber laser based on dual-wavelength pump

LI Shuangjiang, ZHAO Hongru, FU Shijie, ZHANG Junxiang, ZHANG Lu, YAO Zhidong, SHENG Quan, SHI Wei, YAO Jianquan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 1.5 μm和1.7 μm双波长泵浦方案, 可以在实现高效率2.8 μm激光产生的同时解决1.7 μm单波长泵浦由于基态吸收较弱需要较长掺铒氟化物光纤的问题. 建立了基于双波长泵浦低掺铒氟化物光纤的2.8 μm光纤激光器仿真模型, 系统分析了不同泵浦波长组合对2.8 μm激光输出功率和光光转换效率的影响. 仿真结果表明选取1470 nm和1680 nm的双波长泵浦组合, 可以高效地将粒子由基态能级4I15/2搬运至激光上能级4I9/2, 实现粒子数反转, 达到使用米级低掺铒氟化物光纤实现高效率2.8 μm波段激光输出的目标.
    Er3+-doped ZBLAN fiber lasers have been widely investigated for generating high-power high-efficiency 2.8 μm mid-infrared lasers. High-power multimode 980 nm semiconductors are generally used as convenient pump sources in Er3+-doped ZBLAN fiber lasers. However, the longer lifetime of the lower laser level (4I13/2, 9.9 ms) than that of the upper laser level (4I11/2, 6.9 ms) results in severe self-terminating transition. Although highly Er-doped fibers with improved energy transfer upconversion rates can alleviate this problem to some extent, there are still significant limitations in heat load management. On the other hand, the 1.6–1.7 μm laser is used as another pumpscheme due to the partial spectral overlap between ground state absorption (GSA) and excited state absorption (ESA) for population inversion. This pump scheme demonstrates a slope efficiency of up to 50%. However, due to the weak GSA process, a ten-meter-long active fiber is required. To address this issue, we propose a dual-wavelength (1.5 μm and 1.7 μm) pumping technique to achieve high-efficiency 2.8 μm laser output by using an Er3+-doped ZBLAN fiber with meter-level length. A simulation model is established for the dual-wavelength pumping scheme. This scheme combines the strong GSA process in the 1.5 μm band and the strong ESA process in the 1.7 μm band to accelerate the population accumulation on the lower laser level, promote the absorption of the 1.7 μm pump, and thereafter enable the conversion to 2.8 μm laser over much shorter gain fiber. By considering the intensities of ground state absorption and emission of the 4I15/24I13/2 transition, the pump at 1470 nm is selected to efficiently populate the Er3+ to the lower laser level. Then the second pump is optimized to a wavelength of 1680 nm to achieve rapid particle extraction from the lower laser level, thereby realizing population inversion for efficient 2.8 μm laser generation over a meter-long gain fiber. Using the optimized pump wavelengths, the simulation of a 2.8 μm fiber laser based on a 0.5 m-long 0.015 mol/mol erbium-doped fluoride fiber shows that when a 20 W 1680 nm laser is used as the main pump source, only a 1.2 W 1470 nm auxiliary pump is required to achieve a 12.2 W 2.8 μm laser output, with an optical efficiency as high as 58.2%. Furthermore, the fiber laser simulation indicates that when the powers of the two pumps satisfy the relationship of Pλ2 = 20Pλ1-4, the output power of the laser system can reach its maximum value. The dual-wavelength pumping technique proposed in this work enables high-efficiency 2.8 μm mid-infrared laser generation by using meter-long Er3+-doped fluoride fiber, which significantly improves the laser system integration and economic benefits.
  • 图 1  双波长泵浦掺铒氟化物光纤中Er3+跃迁能级示意图

    Fig. 1.  Energy level transitions of the Er3+ in dual-wavelength pumped erbium-doped fluoride fiber.

    图 2  注入2 W的1530 nm泵浦光前后, 腔内1690 nm泵浦光和2800 nm信号光功率沿光纤长度方向演化特性

    Fig. 2.  Power evolution characteristics of the 1690 nm pump and 2800 nm signal laser along the fiber length in the cavity before and after injecting 2 W of the 1530 nm pump power

    图 3  随泵浦光λ1波长变化的演化特性 (a) 2.8 μm激光输出功率、光光转换效率、优化光纤长度; (b) 优化光纤长度下泵浦光吸收功率

    Fig. 3.  Evolution characteristics as a function of the λ1 wavelength: (a) 2.8 μm laser output power, optical efficiency, optimized fiber length and; (b) absorbed pump power of under optimized fiber length.

    图 4  泵浦光λ1的EMI过程关闭时, 随泵浦光λ1波长变化的演化特性 (a) 2.8 μm激光输出功率、光光转换效率、优化光纤长度; (b) 优化光纤长度下泵浦光吸收功率

    Fig. 4.  When EMI of the pump λ1 is off, the evolution characteristics as a function of the λ1 wavelength: (a) 2.8 μm laser output power, optical efficiency, optimized fiber length; (b) absorbed pump power under optimized fiber length.

    图 5  随泵浦光λ2波长变化的演化特性 (a) 2.8 μm激光输出功率、光光转换效率以及优化光纤长度; (b) 优化光纤长度下泵浦光吸收功率

    Fig. 5.  Evolution characteristics as a function of the λ2 wavelength: (a) 2.8 μm laser output power, optical efficiency, optimized fiber length and; (b) the absorbed pump power under optimized fiber length.

    图 6  泵浦光λ2的基态过程关闭时, 随泵浦光λ2波长变化的演化特性 (a) 2.8 μm激光输出功率、光光转换效率、优化光纤长度;(b) 优化光纤长度下泵浦光吸收功率

    Fig. 6.  When ground state transition of the pump λ2 is off, the evolution characteristics as a function of the λ2 wavelength: (a) 2.8 μm laser output power, optical efficiency, optimized fiber length; (b) the absorbed pump power under optimized fiber length.

    图 7  (a) 不同泵浦光λ1λ2功率组合下, 2.8 μm激光输出功率特性; (b) 不同1470 nm泵浦功率下, 热负载沿光纤分布

    Fig. 7.  (a) The 2.8 μm laser output power evolution as different power of pump λ1 and λ2; (b) thermal load distribution along the fiber under different 1470 nm pump power.

  • [1]

    Hodgkinson J, Tatam R P 2012 Meas. Sci. Technol. 24 012004

    [2]

    Picqué N, Hänsch T W 2019 Opt. Photonics News 30 26

    [3]

    Frayssinous C, Fortin V, Bérubé J P, Fraser A, Vallée R 2018 J. Mater. Process. Technol. 252 813Google Scholar

    [4]

    Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Shimizu S, Yasuhara R 2018 Opt. Express 26 3497Google Scholar

    [5]

    Peng Y F, Wei X B, Luo X W, Nie Z, Peng J, Wang Y, Shen D 2016 Opt. Lett. 41 49Google Scholar

    [6]

    张钧翔, 付士杰, 盛泉, 夏文新, 张露, 史伟, 姚建铨 2023 中国激光 50 0715001Google Scholar

    Zhang J X, Fu S J, Sheng Q, Xia W X, Zhang L, Shi W, Yao J Q 2023 Chin. J. Lasers 50 0715001Google Scholar

    [7]

    Yao Y, Hoffman A J, Gmachl C F 2012 Nat. Photon. 6 432Google Scholar

    [8]

    Jackson S D 2024 APL Photonics 9 070904Google Scholar

    [9]

    Zhang J X, Fu S J, Sheng Q, Zhou Z M, Zhang L, Shi W, Yao J Q 2025 Opt. Laser Technol. 81 112024

    [10]

    Pollnau M, Jackson S D 2002 IEEE J. Quantum Electron. 38 162Google Scholar

    [11]

    Quimby R S, Miniscalco W J 1989 Appl. Opt. 28 14Google Scholar

    [12]

    Henderson-Sapir O, Munch J, Ottaway D J 2016 Opt. Express 24 6869Google Scholar

    [13]

    Aydin Y O, Fortin V, Vallée R, Bernier M 2018 Opt. Lett. 43 4542Google Scholar

    [14]

    Schneider J 1995 IEEE Photonics Technol. Lett. 7 4Google Scholar

    [15]

    夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨 2023 物理学报 72 224205Google Scholar

    Xia W X, Fu S J, Zhang J X, Zhang L, Sheng Q, Luo X W, Shi W, Yao J Q 2023 Acta Phys. Sin. 72 224205Google Scholar

    [16]

    Aydın Y O, Fortin V, Maes F, Jobin F, Jackson S D, Vallée R, Bernier M 2017 Optica 4 235Google Scholar

    [17]

    Li J F, Luo H Y, Liu Y, Zhang L, Jackson S D 2014 IEEE J. Sel. Top. Quantum Electron. 20 15

    [18]

    Luo H Y, Shi J C, Chen J S, Wang Y Z, Li J F, Wu H, Liu Y 2023 J. Lightwave Technol. 42 316

    [19]

    Guo C Y, Lin J P, Tang Z Y, Li K Y, Tu L S, Wang J C 2022 J. Lightwave Technol. 40 4397Google Scholar

    [20]

    Zhang J X, Wang R, Fu S J, Sheng Q, Xia W X, Zhang L, Shi W, Yao J Q 2022 Opt. Lett. 47 3684Google Scholar

    [21]

    石俊川, 罗鸿禹, 陈俊生, 李剑峰 2024 中国激光 51 0916001Google Scholar

    Shi J C, Luo H Y, Chen J S, Li J F 2024 Chin. J. Lasers 51 0916001Google Scholar

    [22]

    Srinivasan B, Jain R K, Monnom G 2000 J. Opt. Soc. Am. B 17 178Google Scholar

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, doi: 10.7498/aps.73.20231348
    [2] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术. 物理学报, doi: 10.7498/aps.72.20230657
    [3] 夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨. 基于级联跃迁的2.8 μm低掺铒氟化物光纤激光器数值分析与优化. 物理学报, doi: 10.7498/aps.72.20230903
    [4] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, doi: 10.7498/aps.71.20220743
    [5] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, doi: 10.7498/aps.69.20191093
    [6] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, doi: 10.7498/aps.69.20200337
    [7] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, doi: 10.7498/aps.69.20200472
    [8] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, doi: 10.7498/aps.68.20190297
    [9] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, doi: 10.7498/aps.63.134205
    [10] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, doi: 10.7498/aps.60.064208
    [11] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究. 物理学报, doi: 10.7498/aps.60.024207
    [12] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, doi: 10.7498/aps.59.1030
    [13] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, doi: 10.7498/aps.59.7892
    [14] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, doi: 10.7498/aps.58.6300
    [15] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.58.941
    [16] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, doi: 10.7498/aps.58.6296
    [17] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, doi: 10.7498/aps.57.6419
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, doi: 10.7498/aps.57.5627
    [19] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, doi: 10.7498/aps.57.6404
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  544
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-10-13
  • 上网日期:  2025-10-17

/

返回文章
返回