搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双波长泵浦的高效率2.8 μm掺铒氟化物光纤激光器数值分析与优化

李双江 赵红汝 付士杰 张钧翔 张露 姚治东 盛泉 史伟 姚建铨

引用本文:
Citation:

基于双波长泵浦的高效率2.8 μm掺铒氟化物光纤激光器数值分析与优化

李双江, 赵红汝, 付士杰, 张钧翔, 张露, 姚治东, 盛泉, 史伟, 姚建铨

Numerical analysis and optimization of high-efficiency 2.8 μm erbium-doped fluoride fiber laser based on dual-wavelength pump

LI Shuangjiang, ZHAO Hongru, FU Shijie, ZHANG Junxiang, ZHANG Lu, YAO Zhidong, SHENG Quan, SHI Wei, YAO Jianquan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 1.5 μm和1.7 μm双波长泵浦方案,可以在实现高效率2.8 μm激光产生的同时解决1.7 μm单波长泵浦由于基态吸收较弱需要较长掺铒氟化物光纤的问题。建立了基于双波长泵浦低掺铒氟化物光纤的2.8 μm光纤激光器仿真模型,系统分析了不同泵浦波长组合对2.8 μm激光输出功率和光光转换效率的影响。仿真结果表明选取1470 nm和1680 nm的双波长泵浦组合,可以高效地将粒子由基态能级4I15/2搬运至激光上能级4I9/2,实现粒子数反转,达到使用米级低掺铒氟化物光纤实现高效率2.8 μm波段激光输出的目标。
    Er3+-doped ZBLAN fiber lasers have been widely investigated to generate high power, high efficiency 2.8 μm mid-infrared laser. The high-power multimode 980 nm semiconductors are generally used as the convenient pump sources in Er3+-doped ZBLAN fiber lasers. However, longer lifetime of the lower laser level (4I13/2, 9.9 ms) compared with that of the upper laser level (4I11/2, 6.9 ms), result in severe self-terminating transition. Although highly Er-doped fibers with improved energy transfer upconversion rate can alleviate this problem to some extent, there are still significant limitations on heat load management. On the other hand, the 1.6–1.7 μm laser was used as another pump routine due to the partial spectral overlap between ground and excited state absorption (GSA and ESA) for population inversion. Even slope efficiency up to 50% was demonstrated by this pump scheme, ten meter long active fiber was needed due to the weak GSA process. To address this issue, we propose the dual-wavelength (1.5 μm and 1.7 μm) pumping technique to achieve high-efficiency 2.8 μm laser output with meter-level Er3+- doped ZBLAN fiber. A simulation model is established for the dual-wavelength pumping scheme. This scheme combines the strong GSA process in the 1.5 μm band and the strong ESA process in the 1.7 μm band to accelerate the population accumulation on the lower laser level and promote the absorption of the 1.7 μm pump and thereafter the conversion to 2.8 μm laser over much shorter gain fiber. By considering the intensity of ground state absorption and emission of the 4I15/24I13/2 transition, the pump at 1470 nm is selected to efficiently populate the Er3+ to the lower laser level. Then the second pump is optimized to the wavelength of 1680 nm to achieve rapid particle extraction from the lower laser level and realize population inversion for efficient 2.8 μm laser generation over meter long gain fiber. With the optimized pump wavelengths, the 2.8 μm fiber laser simulation based on 0.5 m 1.5 mol.% erbium-doped fluoride fiber shows that, when a 20 W 1680 nm laser is used as the main pump source, only a 1.2 W 1470 nm auxiliary pump is required to achieve 12.2 W of the 2.8 μm laser output, with an optical efficiency as high as 58.2%. Furthermore, the fiber laser simulation indicates that when the powers of the two pump satisfy the relationship of Pλ2=20Pλ1-4, the output power of the laser system can reach the maximum value. The dual-wavelength pumping technique proposed in this paper allows for high-efficiency 2.8 μm mid-infrared laser generation with meter-long Er3+-doped fluoride fiber, which significantly improves the laser system integration and economic benefits.
  • [1]

    Hodgkinson J, Tatam R P 2012 Meas. Sci. Technol. 24 012004

    [2]

    Picqué N, Hänsch T W 2019 Opt. Photonics News 30 26

    [3]

    Frayssinous C, Fortin V, Bérubé J-P, Fraser A, Vallée R 2018 J. Mater. Process. Technol. 252 813

    [4]

    Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Shimizu S, Yasuhara R 2018 Opt. Express 26 3497

    [5]

    Peng Y F, Wei X B, Luo X W, Nie Z, Peng J, Wang Y, Shen D 2016 Opt. Lett. 41 49

    [6]

    Zhang J X, Fu S J, Sheng Q, Xia W X, Zhang L, Shi W, Yao J Q 2023 Chin. J. Lasers 50 0715001 (in Chinese) [张钧翔, 付士杰, 盛泉, 夏文新, 张露, 史伟, 姚建铨 2023 中国激光 50 0715001]

    [7]

    Yao Y, Hoffman A J, Gmachl C F 2012 Nature Photon. 6 432

    [8]

    Jackson S D 2024 APL Photonics 9 070904

    [9]

    Zhang J X, Fu S J, Sheng Q, Zhou Z M, Zhang L, Shi W, Yao J Q 2025 Opt. Laser Technol. 81 112024

    [10]

    Pollnau M, Jackson S D 2002 IEEE J. Quantum Electron. 38 162

    [11]

    Quimby R S, Miniscalco W J 1989 Appl. Opt. 28 14

    [12]

    Henderson-Sapir O, Munch J, Ottaway D J 2016 Opt. Express 24 6869

    [13]

    Aydin Y O, Fortin V, Vallée R, Bernier M 2018 Opt. Lett. 43 4542[14] Schneider J 1995 IEEE Photonics Technol. Lett. 7 4

    [14]

    Xia W X, Fu S J, Zhang J X, Zhang L, Sheng Q, Luo X W, Shi W, Yao J Q 2023 Acta Phys. Sin. 72 224205 (in Chinese) [夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨 2023 物理学报 72 224205]

    [15]

    Aydın Y O, Fortin V, Maes F, Jobin F, Jackson S D, Vallée R, Bernier M 2017 Optica 4 235

    [16]

    Li J F, Luo H Y, Liu Y, Zhang L, Jackson S D 2014 IEEE J. Sel. Top. Quantum Electron. 20 15

    [17]

    Luo H Y, Shi J C, Chen J S, Wang Y Z, Li J F, Wu H, Liu Y 2023 J. Lightwave Technol. 42 316

    [18]

    Guo C Y, Lin J P, Tang Z Y, Li K Y, Tu L S, Wang J C 2022 J. Lightwave Technol. 40 4397

    [19]

    Zhang J X, Wang R, Fu S J, Sheng Q, Xia W X, Zhang L, Shi W, Yao J Q 2022 Opt. Lett. 47 3684

    [20]

    Shi J C, Luo H Y, Chen J S, Li J F 2024 Chin. J. Lasers 51 0916001 (in Chinese) [石俊川, 罗鸿禹, 陈俊生, 李剑峰 2024 中国激光 51 0916001]

    [21]

    Srinivasan B, Jain R K., Monnom G 2000 J. Opt. Soc. Am. B 17 178

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, doi: 10.7498/aps.73.20231348
    [2] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术. 物理学报, doi: 10.7498/aps.72.20230657
    [3] 夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨. 基于级联跃迁的2.8 μm低掺铒氟化物光纤激光器数值分析与优化. 物理学报, doi: 10.7498/aps.72.20230903
    [4] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, doi: 10.7498/aps.71.20220743
    [5] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, doi: 10.7498/aps.69.20191093
    [6] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, doi: 10.7498/aps.69.20200337
    [7] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, doi: 10.7498/aps.69.20200472
    [8] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, doi: 10.7498/aps.68.20190297
    [9] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, doi: 10.7498/aps.63.134205
    [10] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, doi: 10.7498/aps.60.064208
    [11] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究. 物理学报, doi: 10.7498/aps.60.024207
    [12] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, doi: 10.7498/aps.59.1030
    [13] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, doi: 10.7498/aps.59.7892
    [14] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, doi: 10.7498/aps.58.6300
    [15] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.58.941
    [16] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, doi: 10.7498/aps.58.6296
    [17] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, doi: 10.7498/aps.57.6419
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, doi: 10.7498/aps.57.5627
    [19] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, doi: 10.7498/aps.57.6404
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  28
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-17

/

返回文章
返回