搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氩气感应耦合等离子体非平衡特性分析

张晖 韩宁 孟显 曹进文 孙文进 李梦天 耿金越 黄河激

引用本文:
Citation:

氩气感应耦合等离子体非平衡特性分析

张晖, 韩宁, 孟显, 曹进文, 孙文进, 李梦天, 耿金越, 黄河激

Non-equilibrium characteristics analysis of argon induction coupled plasma

ZHANG Hui, HAN Ning, MENG Xian, CAO Jinwen, SUN Wenjin, LI Mengtian, GENG Jinyue, HUANG Heji
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 受制于感应耦合等离子体(ICP)发生器内极高温度、有限空间以及电磁场与化学反应的复杂耦合, 实验方法在揭示发生器内电磁场与流场的相互作用及放电特性方面存在较大局限, 数值模拟因而成为研究该类问题的重要手段. 本研究以氩气ICP为研究对象, 利用COMSOL在平衡态(LTE)与非平衡态(NLTE)假设下建立二维模型, 比较两者在温度场与能量耦合特性上的差异. 结果表明, 在千帕级压力下, LTE下温度峰值约8200 K, 高温区范围更大且集中于线圈区域. 而NLTE最高温度仅约5990 K, 且分布偏移至下游; 同时, 轴心区域以基态氩为主, 线圈附近激发态与离子分数升高, 表明能量沉积与粒子转化主要集中在趋肤层. 进一步分析不同压力下中心线分布发现, 随压力降低, 电子与气体温度差值增大, 体系热非平衡特征显著增强. 研究揭示了千帕级压力下ICP放电过程中的电磁-热-流动耦合机制及其非平衡特征. 结果表明, 在千帕级压力模拟中, NLTE模型能更准确地捕捉能量耦合与温度分布的关键特征, 为高焓风洞等应用中的ICP数值模拟提供了模型选择依据.
    Inductively coupled plasma (ICP) generators involve complex interactions between electromagnetic, thermal, and chemical processes, which makes direct diagnostics difficult. To clarify these coupling mechanisms, a two-dimensional axisymmetric model of an argon ICP torch operating at kilopascal pressure is developed using COMSOL Multiphysics under local thermodynamic equilibrium (LTE) and non-equilibrium (NLTE) assumptions. A two-dimensional axisymmetric magnetohydrodynamic (MHD) model is established, which combines electromagnetic induction, convective-radiative heat transfer, and a seven-reaction argon plasma chemistry mechanism. The LTE model assumes that the temperature of all species is uniform, while the NLTE model independently solves for the electron temperature (Te) and gas temperature (Tg), thereby accounting for incomplete energy exchange between electrons and heavy particles. At a discharge power of 1000 W and a working pressure of 10 kPa, the LTE model predicts a peak temperature of approximately 8200 K, concentrated around the induction coils. In contrast, the NLTE model yields a maximum gas temperature of about 5990 K, with the hot zone shifted downstream. The NLTE model reveals a clear two-temperature structure: Te peaks near the coil wall (~0.93 eV), while Tg reaches its maximum downstream, indicating a pronounced thermal non-equilibrium state where electrons are preferentially heated by the induced field. The calculated skin depth (~11.3 mm) coincides with the region of strongest electromagnetic energy deposition. Species analysis shows that the plasma core is dominated by ground-state argon (Ar) (>99%), while excited argon (Ar*) and argon ions (Ar+) increase notably near the coil region, confirming that excitation and ionization processes are localized within the skin layer. Furthermore, comparison between the 5 kPa and 10 kPa cases shows that as pressure decreases, the difference between Te and Tg increases, indicating enhanced thermal non-equilibrium due to reduced collisional coupling. Overall, the results highlight that LTE and NLTE assumptions lead to markedly different predictions of temperature and energy coupling at kilopascal pressures. The NLTE model more realistically captures delayed energy transfer and spatial temperature decoupling, offering new insights into the electromagnetic-thermal-flow interactions of ICP discharges and providing a modeling reference for designing ICP-based high-enthalpy plasma wind tunnel and realizing related aerospace applications.
  • 图 1  感应耦合等离子体发生器结构示意图

    Fig. 1.  Schematic diagram of the structure of the inductively coupled plasma generator.

    图 2  感应耦合等离子体发生器网格划分

    Fig. 2.  Meshing of inductively coupled plasma generator.

    图 3  1000 W非平衡态与平衡态感应耦合等离子体放电温度云图 (a) 非平衡态; (b) 平衡态

    Fig. 3.  Temperature cloud diagram of 1000 W non-equilibrium and equilibrium inductively coupled plasma discharge: (a) Non-equilibrium state; (b) equilibrium state.

    图 4  平衡模型和非平衡模型下中轴线上温度分布变化

    Fig. 4.  Variation of temperature distribution on the central axis under the equilibrium model and the unbalanced model.

    图 5  氩气感应耦合等离子体放电过程的气体温度分布 (a) 2 ms; (b) 4 ms; (c) 6 ms; (d) 8 ms; (e) 9 ms; (f) 10 ms

    Fig. 5.  The gas temperature distribution in the argon gas induction coupled plasma discharge process: (a) 2 ms; (b) 4 ms; (c) 6 ms; (d) 8 ms; (e) 9 ms; (f) 10 ms.

    图 6  放电初期(2 ms)1000 W放电管内磁场分布

    Fig. 6.  Magnetic field distribution in the 1000 W discharge tube at the initial stage of discharge (2 ms).

    图 7  1000 W不同时刻中心轴线气体温度分布

    Fig. 7.  The gas temperature distribution along the central axis at different times of 1000 W.

    图 8  稳态阶段1000 W放电管内分布云图 (a) 电子温度; (b) 气体温度

    Fig. 8.  Distribution cloud diagram of 1000 W discharge tube in the steady-state stage: (a) Electron temperature; (b) gas temperature.

    图 9  稳态阶段1000 W放电管内气体速度分布云图

    Fig. 9.  Cloud diagram of gas velocity distribution in a 1000 W discharge tube during the steady-state stage.

    图 10  稳态阶段1000 W放电管内中轴线上粒子摩尔分数分布

    Fig. 10.  The particle mole fraction distribution on the central axis of the 1000 W discharge tube during the steady-state stage.

    图 11  稳态阶段1000 W放电管内z = 91.5 mm截线(线圈1, 2中间位置)粒子摩尔分数分布

    Fig. 11.  The particle mole fraction distribution of z = 91.5 mm cross-sectional wire (the middle position between coils 1 and 2) in the 1000 W discharge tube during the steady-state stage.

    图 12  不同压力下中心线上气体温度和电子温度

    Fig. 12.  The gas temperature and electron temperature on the center line under different pressures.

    表 1  氩气化学反应

    Table 1.  Argon chemical reaction.

    反应反应方程反应类型反应速率系数Δε/eV
    1e+Ar→e+Ar弹性碰撞kel/
    2e+Ar→e+Ar*激发kex11.56
    3e+Ar*→e+Ar激发ksc–11.56
    4e+Ar→2e+Ar+电离ki15.6
    5e+Ar*→2e+Ar+电离ksi4.14
    6Ar*+Ar*→
    e+Ar+Ar+
    潘宁电离kmp
    7Ar+Ar*→Ar+Ar亚稳猝灭k2 p
    下载: 导出CSV
  • [1]

    詹志华, 王春华, 周秋娇, 刘成周, 赵鹏 2022 电工技术学报 37 2725

    Zhan Z H, Wang C H, Zhou Q J, Liu C Z, Zhao P 2022 Trans. China Electrotech. Soc. 37 2725

    [2]

    Bottin A, Carbonaro M, Haegen V V, Paris S 1999 ESA Publications Division 462 553

    [3]

    Panerai F, Chazot O 2012 Mater. Chem. Phys. 134 597Google Scholar

    [4]

    Ito T, Ishida K, Mizuno M, Sumi T, Matsuzaki T, Nagai J, Murata H 2005 43rd AIAA Aerospace Science Meeting and Exhibit Reno, Nevada, January 10−13, 2005 pp10−13

    [5]

    林烈, 吴彬, 吴承康 2001 空气动力学学报 19 407

    Lin L, Wu B, Wu C K 2001 Acta Aerodyn. Sin. 19 407

    [6]

    刘丽萍, 王国林, 王一光, 张军, 罗磊 2017 航空学报 39 421696

    Liu L P, Wang G L, Wang Y G, Zhang J, Luo L 2017 Acta Aeronaut. Astronaut. Sin. 39 421696

    [7]

    Luo L, Wang Y, Liu L, Duan L, Wang G, Lu Y 2016 Carbon 103 73Google Scholar

    [8]

    张晓宁, 李和平, Murphy A B, 夏维东 2013 高电压技术 39 1640

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 High Volt. Eng. 39 1640

    [9]

    Fujino T, Ito S, Okuno Y 2021 IEEE Trans. Plasma Sci. 49 2954Google Scholar

    [10]

    Al-Mamun S A, Tanaka Y, Uesugi Y 2010 Plasma Chem. Plasma Process. 30 141Google Scholar

    [11]

    Fujita K, Suzuki T, Mizuno M, Fujii K 2009 J. Thermophys. Heat Transf. 23 840Google Scholar

    [12]

    Tanaka Y, Sakuta T 2002 J. Phys. D: Appl. Phys. 35 2149Google Scholar

    [13]

    Degrez G, Abeele D V, Barbante P, Bottin B 2004 Int. J. Numer. Methods Heat Fluid Flow 14 538Google Scholar

    [14]

    李日正, 倪国华, 孙红梅, 王城 2024 真空科学与技术学报 44 819

    Li R Z, Ni G H, Sun H M, Wang C 2024 Chin. J. Vac. Sci. Technol. 44 819

    [15]

    Liu Y, Xia G 2025 6th International Conference on Mechatronics Technology and Intelligent Manufacturing Nanjing, China, April 11−13, 2025 pp226−229

    [16]

    张雨涵, 赵欣茜, 梁英爽, 郭媛媛 2024 物理学报 73 135201Google Scholar

    Yu H Z, Xin Q Z, Ying S L, Yuan Y G 2024 Acta Phys. Sin. 73 135201Google Scholar

    [17]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. B 12 478Google Scholar

    [18]

    Lei F, Li X, Liu Y, Liu D, Yang M, Yu Y 2018 AIP Adv. 8 015003Google Scholar

    [19]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [20]

    朱海龙, 童洪辉, 杨发展, 程昌明, 叶高英 2013 高电压技术 39 1621

    Zhu H L, Tong H H, Yang F Z, Cheng C M, Ye G Y 2013 High Volt. Eng. 39 1621

    [21]

    余德平, 吴杰, 涂军, 张仕杨, 辛强, 万勇建 2020 哈尔滨工业大学学报 52 82

    Yu D P, Wu J, Tu J, Zhang S Y, Xin Q, Wan Y J 2020 J. Harbin Inst. Technol. 52 82

    [22]

    Fujita K, Suzuki T, Ozawa T 2011 27th International Symposium on Rarefied Gas Dynamics Pacific Grove, California, USA, July 10−15, 2011 pp407−412

    [23]

    徐姿, 龚学余, 杜丹, 陈文波 2018 低温物理学报 40 36

    Xu Z, Gong X Y, Du D, Chen W B 2018 J. Low Temperat. Phys. 40 36

    [24]

    2025-08-25 [荣命哲http://plasma-data.net/index

    [2025-08-25

    [25]

    Yu M, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar

    [26]

    Satoshi M, Kazuhiko Y, Takashi A 2015 JAXA Special Publication JAXA-SP-14-010 17−22

  • [1] 安彦霖, 赵明亮, 罗倩, 高飞, 王友年. 基于多种诊断方法的氮与氩氮混合等离子体中中性气体温度研究. 物理学报, doi: 10.7498/aps.75.20251240
    [2] 张宇, 罗倩, 黄高煌, 高飞, 王友年. 射频感应耦合远端氢等离子体源的二维流体模拟. 物理学报, doi: 10.7498/aps.75.20251202
    [3] 殷桂琴, 张蕾蕾, 脱升. 双频磁化容性耦合氩/甲烷等离子体放电特性. 物理学报, doi: 10.7498/aps.74.20250244
    [4] 汪耀庭, 罗岚月, 李和平, 姜东君, 周明胜. 外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性. 物理学报, doi: 10.7498/aps.71.20221431
    [5] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, doi: 10.7498/aps.70.20201700
    [6] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型. 物理学报, doi: 10.7498/aps.70.20201946
    [7] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [8] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [9] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟. 物理学报, doi: 10.7498/aps.61.015201
    [10] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, doi: 10.7498/aps.57.1128
    [11] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, doi: 10.7498/aps.57.1796
    [12] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究. 物理学报, doi: 10.7498/aps.57.5123
    [13] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, doi: 10.7498/aps.56.977
    [14] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, doi: 10.7498/aps.55.3494
    [15] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究. 物理学报, doi: 10.7498/aps.55.3451
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, doi: 10.7498/aps.55.5311
    [17] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, doi: 10.7498/aps.54.1653
    [18] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性. 物理学报, doi: 10.7498/aps.53.3394
    [19] 林瑞烟, 刘敏. 等离子体与外迴路有强耦合的平衡计算. 物理学报, doi: 10.7498/aps.33.250
    [20] 王德焴. 自由界面等离子体平衡的变分原理. 物理学报, doi: 10.7498/aps.29.233
计量
  • 文章访问数:  85
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-31
  • 修回日期:  2025-11-14
  • 上网日期:  2025-11-18

/

返回文章
返回