搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频磁化容性耦合氩/甲烷等离子体放电特性的研究

殷桂琴 张蕾蕾 脱升

引用本文:
Citation:

双频磁化容性耦合氩/甲烷等离子体放电特性的研究

殷桂琴, 张蕾蕾, 脱升

Study on the discharge characteristics of dual-frequency magnetized capacitively coupled Ar/CH4 plasma

YIN Guiqin, ZHANG Leilei, TUO Sheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,双频容性耦合等离子体放电技术在先进材料加工领域展现出显著优势。本文通过一维PIC/MCC模拟方法,引入外加磁场,研究了在双频(20MHz/100MHz)双极容性耦合等离子体放电中,低频频率对双频容性耦合氩/甲烷等离子体放电特性的影响。模拟结果表明:在高频频率为低频频率的整数倍时,高频与低频叠加显著,鞘层振荡更明显。随着低频频率的增加,电子密度、电荷密度、高能电子密度以及电子加热率都随之增大,其中电子密度随低频频率增加达14%。鞘层附近的电子温度随低频频率的增加出现下降趋势,大约下降12%。电子能量几率分布(EEPF)表现为双麦克斯韦分布,且当低频频率增加时,低能电子和高能电子的布局数都增多,同时讨论了低频频率的增加对各种离子的密度的影响,以及到达极板处的CH4+、CH3+粒子的角度与能量的变化分布。
    In recent years, dual-frequency capacitively coupled plasma discharge technology has significant advantages for material processing. In this paper, the one-dimensional PIC/MCC simulation method is used to discuss the influence of low-frequency frequency on the discharge characteristics of capacitively coupled argon/methane plasma driven by dual-frequency (20MHz/100MHz) dipole and by the introduction of an external magnetic field. The simulation results show that when the high-frequency frequency is an integer multiple of the low-frequency frequency, the superposition of high and low frequencies is significant, and the sheath oscillation is more obvious. With the increase of low-frequency frequency, the electron density, charge density, high-energy electron density and electron heating rate all increase. The electron density increases to 14% with the low-frequency frequency increase. The electron temperature near the sheath shows a downward trend with the increase of low-frequency frequency, dropping by approximately 12%. The electron energy probability distribution (EEPF) shows a double Maxwell distribution. When the low-frequency frequency increases, the layout numbers of both low-energy electrons and high-energy electrons increase. Meanwhile, the influence of the low-frequency frequency increase on the various ions density, and the Angle and energy distribution of CH4+ and CH3+ particles reaching the plates are discussed.
    In the Ar/CH4 plasma driven by dual-frequency by adding external magnetic field, the controllability of ion energy can effectively optimize the structure and performance of carbon-containing films. By regulating discharge parameters to control the ions incident Angle on the substrate, carbon-containing atoms can be deposited in a specific direction, thereby achieving the directional growth of carbon-containing films. This is significant for the preparation of graphene films, carbon nanotube arrays, etc. Meanwhile, the regulation of the ion incident Angle is helpful to improve the binding force between the carbon film and the substrate. This study found that the average energy of the ions reached its peak when the Angle of the ions was around 0.32. This peak was most significant at a low-frequency frequency of 15 MHz. The results in this paper provides a theoretical reference for the preparation of carbon films.
  • [1]

    Li Y M, Mann D, Rolandi M, Kim W 2004 Nano Lett. 4317

    [2]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A. 31050825

    [3]

    Jung C O, Chi K K, Hwang B G, Moon J T, Lee M Y, Lee J G 1999 Thin Solid Films. 341112

    [4]

    Schulze J, Gans T, O'Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 407008

    [5]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D Appl. Phys. 37697

    [6]

    Robiche J, Boyle P C, Turner M M, Ellingboe A R 2003 J. Phys. D: Appl. Phys. 361810

    [7]

    Goto H H, Löwe H-D, Ohmi T 1992 J. Vac. Sci. Technol. A. 103048

    [8]

    Goto H H, Löwe H-D, Ohmi T 1993 IEEE Trans. Semicond. Manuf. 658

    [9]

    Tsai W, Mueller G, Lindquist R, Frazier B, Vahedi V 1996 J. Vac. Sci. Technol. B. 143276

    [10]

    Sharma S, Turner M M 2014 J. Phys. D: Appl. Phys. 47285201

    [11]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas. 104545

    [12]

    Yang S, Zhang W, Shen J, Liu H, Tang C, Xu Y, Cheng J, Shao J, Xiong J, Wang X, Liu H, Huang J, Zhang X, Lan H, Li Y 2024 AIP Adv. 14065104

    [13]

    Sharma S, Sirse N, Turner M M, Ellingboe A R 2018 Phys. Plasmas. 25063501

    [14]

    Yin G Q, Gao S S, Liu Z H, Yuan Q H 2022 Phys. Lett. A. 426127910

    [15]

    Gao S S 2022 MSc (Lanzhou: Northwest Normal University) (in Chinese) [高闪闪2022硕士学位论文(兰州: 西北师范大学) ]

    [16]

    Yang S L, Zhang Y, Wang H Y, Cui J W, Jiang W 2017 Plasma Processes Polym. 141700087

    [17]

    Yang S L, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27035008

    [18]

    Yan M H, Wu H H, Wu H, Peng Y L, Yang S L 2024 J Vac Sci Technol A. 42053007

    [19]

    Sharma S, Patil S, Sengupta S, Sen A, Khrabrov A, Kaganovich I 2022 Phys. Plasmas. 29063501

    [20]

    Sun J Y, Wen H, Zhang Q Z, Schulze J, Liu Y X, Wang Y N 2022 Plasma Sources Sci. Technol. 31085012

    [21]

    Zheng B C, Wang K L, Grotjohn T, Schuelke T, Fan Q H 2019 Plasma Sources Sci. Technol. 2809LT03

    [22]

    Yang S L, Zhang Y, Wang H Y, Wang S, Jiang W 2017 Phys. Plasmas. 24033504

    [23]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24025013

    [24]

    Yin G Q, Jiang Y B, Yuan Q H 2024 Mod. Phys. Lett. B. 382450269

    [25]

    Wang J-C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30075031

    [26]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 1965

    [27]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87179

    [28]

    Verboncoeur J P 2001 J. Comput. Phys. 174421

    [29]

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61165101(in Chinese) [沈向前, 谢泉, 肖清泉, 陈茜, 丰云2012物理学报61165101]

    [30]

    Jin X L, Yang Z H 2006 Acta Phys. Sin. 555930(in Chinese) [金晓林, 杨中海2006物理学报555930]

    [31]

    Song M Y, Yoon J S, Cho H, Itikawa Y, Karwasz G P, Kokoouline V, Nakamura Y, Tennyson J 2015 J. Phys. Chem. Ref. Data. 44023101

    [32]

    Sun J Y, Zhang Q-Z, Liu J-R, Song Y-H, Wang Y-N 2020 Plasma Sources Sci. Technol. 29114002

  • [1] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, doi: 10.7498/aps.73.20231369
    [2] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟. 物理学报, doi: 10.7498/aps.73.20240436
    [3] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟. 物理学报, doi: 10.7498/aps.73.20240612
    [4] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, doi: 10.7498/aps.72.20230686
    [5] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, doi: 10.7498/aps.71.20220493
    [6] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, doi: 10.7498/aps.70.20210473
    [7] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, doi: 10.7498/aps.70.20202113
    [8] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, doi: 10.7498/aps.69.20191864
    [9] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, doi: 10.7498/aps.66.185202
    [10] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, doi: 10.7498/aps.63.185205
    [11] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, doi: 10.7498/aps.62.205208
    [12] 郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东. 高气压直流辉光CH4/H2等离子体的气相过程诊断. 物理学报, doi: 10.7498/aps.62.165204
    [13] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, doi: 10.7498/aps.62.115202
    [14] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, doi: 10.7498/aps.61.015204
    [15] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, doi: 10.7498/aps.61.225203
    [16] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, doi: 10.7498/aps.61.045204
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, doi: 10.7498/aps.55.5930
    [18] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, doi: 10.7498/aps.55.5935
    [19] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, doi: 10.7498/aps.54.1653
    [20] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, doi: 10.7498/aps.49.2420
计量
  • 文章访问数:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-13

/

返回文章
返回