搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频磁化容性耦合氩/甲烷等离子体放电特性

殷桂琴 张蕾蕾 脱升

引用本文:
Citation:

双频磁化容性耦合氩/甲烷等离子体放电特性

殷桂琴, 张蕾蕾, 脱升
cstr: 32037.14.aps.74.20250244

Discharge characteristics of dual-frequency magnetized capacitively coupled Ar/CH4 plasma

YIN Guiqin, ZHANG Leilei, TUO Sheng
cstr: 32037.14.aps.74.20250244
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 双频容性耦合等离子体放电技术在先进材料加工领域展现出显著优势. 本文通过一维粒子模拟/蒙特卡罗碰撞(PIC/MCC)模拟方法, 引入外加磁场, 研究了在双频(20/100 MHz)双极容性耦合等离子体放电中, 低频频率对双频容性耦合氩/甲烷等离子体放电特性的影响. 模拟结果表明, 在高频频率为低频频率的整数倍时, 高频与低频叠加显著, 鞘层振荡更明显. 随着低频频率的增大, 电子密度、电荷密度、高能电子密度以及电子加热率都随之增大, 其中电子密度随低频频率增大达14%. 鞘层附近的电子温度随低频频率的增大出现下降趋势, 大约下降12%. 电子能量概率分布(EEPF)表现为双麦克斯韦分布, 且当低频频率增大时, 低能电子和高能电子的布居数都增多, 同时讨论了低频频率的增大对各种离子的密度的影响, 以及到达极板处的$ {\text{CH}}_{4}^{+} $, $ {\text{CH}}_{3}^{+} $粒子的角度与能量的变化分布.
    In recent years, dual-frequency capacitively coupled plasma discharge technology has demonstrated remarkable advantages in the fields of material processing. In this paper, a one-dimensional PIC/MCC (particle-in-cell/Monte Carlocollision) simulation method is used to discuss the influence of low frequency on the discharge characteristics of capacitively coupled argon/methane plasma driven by dual-frequency (20/100 MHz) dipole, with an external magnetic field added. The simulation results show that when the high frequency is an integer multiple of the low frequency, the superposition of high and low frequencies is significant, and the sheath oscillation is more obvious. As low frequency increases, the electron density, charge density, high-energy electron density and electron heating rate all increase. Specifically, as low frequency increase, the electron density increases to 14%, the electron temperature near the sheath decreases by about 12%, the electron energy probability distribution (EEPF) shows a double Maxwellian distribution, the populations of both low-energy electrons and high-energy electrons increase, and at the same time, the densities of various ions and the angle and energy distributions of ${\text{CH}}_{4}^{+} $ and ${\text{CH}}_{3}^{+} $ particles reaching the electrode plates are influenced.In the Ar/CH4 plasma driven by dual-frequency, with external magnetic field added, the controlling of ion energy can effectively optimize the structure and performance of carbon-containing films. By regulating discharge parameters to control the incident angle of the ions on the substrate, carbon-containing atoms can be deposited in a specific direction, thereby achieving the directional growth of carbon-containing films. This is significant for the preparation of graphene films, carbon nanotube arrays, etc. Meanwhile, the regulation of the incident angle of ions is helpful to improve the binding force between the carbon film and the substrate. It is found in this study that when the incident angle of the ions is around 0.32, the average energy of the ions reaches its peak. This peak is most significant at a low frequency of 15 MHz. The results in this paper provide a theoretical reference for preparing carbon films.
      通信作者: 张蕾蕾, zhangleil7668@163.com
    • 基金项目: 国家自然科学基金(批准号: 12165019)资助的课题.
      Corresponding author: ZHANG Leilei, zhangleil7668@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12165019).
    [1]

    Li Y M, Mann D, Rolandi M, Kim W 2004 Nano Lett. 4 317Google Scholar

    [2]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A. 31 050825Google Scholar

    [3]

    Jung C O, Chi K K, Hwang B G, Moon J T, Lee M Y, Lee J G 1999 Thin Solid Films 341 112Google Scholar

    [4]

    Schulze J, Gans T, O'Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 40 7008Google Scholar

    [5]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D: Appl. Phys. 37 697Google Scholar

    [6]

    Robiche J , Boyle P C , Turner M M, Ellingboe A R 2003 J. Phys. D: Appl. Phys. 36 1810

    [7]

    Goto H H, Löwe H D, Ohmi T 1992 J. Vac. Sci. Technol. A. 10 3048Google Scholar

    [8]

    Goto H H, Löwe H D, Ohmi T 1993 IEEE Trans. Semicond. Manuf. 6 58Google Scholar

    [9]

    Tsai W, Mueller G, Lindquist R, Frazier B, Vahedi V 1996 J. Vac. Sci. Technol. B 14 3276Google Scholar

    [10]

    Sharma S, Turner M M 2014 J. Phys. D: Appl. Phys. 47 285201Google Scholar

    [11]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas 10 4545Google Scholar

    [12]

    Yang S, Zhang W, Shen J F, Liu H, Tang C J, Xu Y H, Cheng J, Shao J R, Xiong J, Wang X Q, Liu H F, Huang J, Zhang X, Lan H, Li Y C 2024 AIP Adv. 14 065104Google Scholar

    [13]

    Sharma S, Sirse N, Turner M M, Ellingboe A R 2018 Phys. Plasmas 25 063501Google Scholar

    [14]

    Yin G Q, Gao S S, Liu Z H, Yuan Q H 2022 Phys. Lett. A 426 127910Google Scholar

    [15]

    高闪闪2022 硕士学位论文(兰州: 西北师范大学)

    Gao S S 2022 M. S. Thesis (Lanzhou: Northwest Normal University

    [16]

    Yang S L, Zhang Y, Wang H Y, Cui J W, Jiang W 2017 Plasma Processes Polym. 14 1700087Google Scholar

    [17]

    Yang S L, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [18]

    Yan M H, Wu H H, Wu H, Peng Y L, Yang S L 2024 J. Vac. Sci. Technol. A 42 053007Google Scholar

    [19]

    Sharma S, Patil S, Sengupta S, Sen A, Khrabrov A, Kaganovich I 2022 Phys. Plasmas 29 063501Google Scholar

    [20]

    Sun J Y, Wen H, Zhang Q Z, Schulze J, Liu Y X, Wang Y N 2022 Plasma Sources Sci. Technol. 31 085012Google Scholar

    [21]

    Zheng B C, Wang K L, Grotjohn T, Schuelke T, Fan Q H 2019 Plasma Sources Sci. Technol. 28 09LT03Google Scholar

    [22]

    Yang S L, Zhang Y, Wang H Y, Wang S, Jiang W 2017 Phys. Plasmas 24 033504Google Scholar

    [23]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [24]

    Yin G Q, Jiang Y B, Yuan Q H 2024 Mod. Phys. Lett. B 38 2450269

    [25]

    Wang J-C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30 075031Google Scholar

    [26]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [27]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [28]

    Verboncoeur J P 2001 J. Comput. Phys. 174 421Google Scholar

    [29]

    沈向前, 谢泉, 肖清泉, 陈茜, 丰云 2012 物理学报 61 165101Google Scholar

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61 165101Google Scholar

    [30]

    金晓林, 杨中海 2006 物理学报 55 5930Google Scholar

    Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930Google Scholar

    [31]

    Song M Y, Yoon J S, Cho H, Itikawa Y, Karwasz G P, Kokoouline V, Nakamura Y, Tennyson J 2015 J. Phys. Chem. Ref. Data. 44 023101Google Scholar

    [32]

    Sun J Y, Zhang Q Z, Liu J R, Song Y H, Wang Y N 2020 Plasma Sources Sci. Technol. 29 114002Google Scholar

  • 图 1  模拟装置图

    Fig. 1.  Simulation setup diagram.

    图 2  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15时, (a)电子密度; (b)电荷密度; (c)高能电子密度随低频频率变化的时空分布图

    Fig. 2.  Spatiotemporal distribution diagram of the (a) electron density, (b) charge density, (c) high-energy electron density with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 3  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, (a)电子温度 (eV), (b)电子加热率, (c)电场(V/m)随低频频率变化的时空分布图

    Fig. 3.  Spatiotemporal distribution diagram of the (a) electron temperature (eV); (b) electron heating rate; (c) electric field (V/m) with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 4  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, 电子能量概率分布函数随低频频率变化的分布图

    Fig. 4.  Distribution of the electric energy probability function with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 5  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, 电子、CH4+、CH3+、Ar+的离子密度随低频频率变化的分布图

    Fig. 5.  The ion density distributions of electron、CH4+, CH3+, Ar+ with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 6  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, 到达极板处的$ {\text{CH}}_{4}^{+} $, $ {\text{CH}}_{3}^{+} $粒子在每个速度方向与轴向的夹角处能量的平均值随低频频率变化的分布图

    Fig. 6.  Distribution of the average value of the energy of $ {\text{CH}}_{4}^{+} $ and $ {\text{CH}}_{3}^{+} $ particles arriving at the pole plate at the angle between each velocity direction and the axial direction with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    表 1  碰撞反应类型

    Table 1.  Collision reaction type in the simulation.

    序号 反应式 碰撞类型 阈值/eV
    1 $ {{\text{e}}^{{ - }}}{\text{ + Ar}} \to {{\text{e}}^{{ - }}}{\text{ + Ar}} $ 弹性碰撞 0
    2 $ {{\text{e}}^{{ - }}}{\text{ + Ar}} \to {{\text{e}}^{{ - }}}{\text{ + Ar}} $ 激发碰撞 11.5
    3 $ {{\text{e}}^{{ - }}}{\text{ + Ar}} \to 2{{\text{e}}^{{ - }}}{\text{ + A}}{{\text{r}}^{+}} $ 电离碰撞 15.80
    4 $ {\text{A}}{{\text{r}}^{+}}{\text{ + Ar}} \to {\text{A}}{{\text{r}}^{+}}{\text{ + Ar}} $ 弹性碰撞 0.00
    5 $ {\text{A}}{{\text{r}}^{+}}{\text{ + Ar}} \to {\text{Ar + A}}{{\text{r}}^ + } $ 电荷交换 0.00
    6 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} $ 弹性碰撞 0
    7 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{4}}\left( {{{\text{V}}_{2}}} \right) $ 激发碰撞 0.162
    8 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{4}}\left( {{{\text{V}}_{1}}} \right) $ 激发碰撞 0.362
    9 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{3}}{\text{ + H}} $ 激发碰撞 7.5
    10 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{2}}{+}{{\text{H}}_2} $ 激发碰撞 9.1
    11 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C + 2}}{{\text{H}}_2} $ 激发碰撞 15.5
    12 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + CH + }}{{\text{H}}_{2}}{\text{ + H}} $ 激发碰撞 15.5
    13 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {2}{{\text{e}}^{{ - }}}{\text{ + CH}}_4^ + $ 电离碰撞 12.63
    14 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {2}{{\text{e}}^{{ - }}}{\text{ + H + CH}}_3^ + $ 电离碰撞 12.63
    15 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {2}{{\text{e}}^{{ - }}}{+}{{\text{H}}_{2}}{\text{ + CH}}_2^ + $ 电离碰撞 16.2
    16 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{3}}{+}{{\text{H}}^ + } $ 电离碰撞 21.1
    17 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + 2}}{{\text{H}}_{2}}{+}{{\text{C}}^ + } $ 电离碰撞 22
    18 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + H + }}{{\text{H}}_{2}}{\text{ + C}}{{\text{H}}^ + } $ 电离碰撞 22.2
    19 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{2}}{+}{{\text{H}}_2^ +} $ 电离碰撞 22.3
    下载: 导出CSV
  • [1]

    Li Y M, Mann D, Rolandi M, Kim W 2004 Nano Lett. 4 317Google Scholar

    [2]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A. 31 050825Google Scholar

    [3]

    Jung C O, Chi K K, Hwang B G, Moon J T, Lee M Y, Lee J G 1999 Thin Solid Films 341 112Google Scholar

    [4]

    Schulze J, Gans T, O'Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 40 7008Google Scholar

    [5]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D: Appl. Phys. 37 697Google Scholar

    [6]

    Robiche J , Boyle P C , Turner M M, Ellingboe A R 2003 J. Phys. D: Appl. Phys. 36 1810

    [7]

    Goto H H, Löwe H D, Ohmi T 1992 J. Vac. Sci. Technol. A. 10 3048Google Scholar

    [8]

    Goto H H, Löwe H D, Ohmi T 1993 IEEE Trans. Semicond. Manuf. 6 58Google Scholar

    [9]

    Tsai W, Mueller G, Lindquist R, Frazier B, Vahedi V 1996 J. Vac. Sci. Technol. B 14 3276Google Scholar

    [10]

    Sharma S, Turner M M 2014 J. Phys. D: Appl. Phys. 47 285201Google Scholar

    [11]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas 10 4545Google Scholar

    [12]

    Yang S, Zhang W, Shen J F, Liu H, Tang C J, Xu Y H, Cheng J, Shao J R, Xiong J, Wang X Q, Liu H F, Huang J, Zhang X, Lan H, Li Y C 2024 AIP Adv. 14 065104Google Scholar

    [13]

    Sharma S, Sirse N, Turner M M, Ellingboe A R 2018 Phys. Plasmas 25 063501Google Scholar

    [14]

    Yin G Q, Gao S S, Liu Z H, Yuan Q H 2022 Phys. Lett. A 426 127910Google Scholar

    [15]

    高闪闪2022 硕士学位论文(兰州: 西北师范大学)

    Gao S S 2022 M. S. Thesis (Lanzhou: Northwest Normal University

    [16]

    Yang S L, Zhang Y, Wang H Y, Cui J W, Jiang W 2017 Plasma Processes Polym. 14 1700087Google Scholar

    [17]

    Yang S L, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [18]

    Yan M H, Wu H H, Wu H, Peng Y L, Yang S L 2024 J. Vac. Sci. Technol. A 42 053007Google Scholar

    [19]

    Sharma S, Patil S, Sengupta S, Sen A, Khrabrov A, Kaganovich I 2022 Phys. Plasmas 29 063501Google Scholar

    [20]

    Sun J Y, Wen H, Zhang Q Z, Schulze J, Liu Y X, Wang Y N 2022 Plasma Sources Sci. Technol. 31 085012Google Scholar

    [21]

    Zheng B C, Wang K L, Grotjohn T, Schuelke T, Fan Q H 2019 Plasma Sources Sci. Technol. 28 09LT03Google Scholar

    [22]

    Yang S L, Zhang Y, Wang H Y, Wang S, Jiang W 2017 Phys. Plasmas 24 033504Google Scholar

    [23]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [24]

    Yin G Q, Jiang Y B, Yuan Q H 2024 Mod. Phys. Lett. B 38 2450269

    [25]

    Wang J-C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30 075031Google Scholar

    [26]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [27]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [28]

    Verboncoeur J P 2001 J. Comput. Phys. 174 421Google Scholar

    [29]

    沈向前, 谢泉, 肖清泉, 陈茜, 丰云 2012 物理学报 61 165101Google Scholar

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61 165101Google Scholar

    [30]

    金晓林, 杨中海 2006 物理学报 55 5930Google Scholar

    Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930Google Scholar

    [31]

    Song M Y, Yoon J S, Cho H, Itikawa Y, Karwasz G P, Kokoouline V, Nakamura Y, Tennyson J 2015 J. Phys. Chem. Ref. Data. 44 023101Google Scholar

    [32]

    Sun J Y, Zhang Q Z, Liu J R, Song Y H, Wang Y N 2020 Plasma Sources Sci. Technol. 29 114002Google Scholar

  • [1] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [2] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟. 物理学报, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [3] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [4] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [5] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [6] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [7] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [8] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [9] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [10] 丰志兴, 宁成, 薛创, 李百文. 基于等离子体粒子模拟的喷气Z箍缩过程物理研究. 物理学报, 2014, 63(18): 185203. doi: 10.7498/aps.63.185203
    [11] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [12] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [13] 杨超, 龙继东, 王平, 廖方燕, 夏蒙重, 刘腊群. 潘宁源放电的全三维电磁粒子模拟/蒙特卡罗碰撞数值算法研究. 物理学报, 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [14] 郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东. 高气压直流辉光CH4/H2等离子体的气相过程诊断. 物理学报, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [15] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [16] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [17] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [19] 马燕云, 常文蔚, 银 燕, 岳宗五, 曹莉华, 刘大庆. 等离子体粒子模拟中的一种碰撞模型. 物理学报, 2000, 49(8): 1513-1519. doi: 10.7498/aps.49.1513
    [20] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟. 物理学报, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
计量
  • 文章访问数:  317
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 修回日期:  2025-04-29
  • 上网日期:  2025-05-13

/

返回文章
返回