-
近年来,双频容性耦合等离子体放电技术在先进材料加工领域展现出显著优势。本文通过一维PIC/MCC模拟方法,引入外加磁场,研究了在双频(20MHz/100MHz)双极容性耦合等离子体放电中,低频频率对双频容性耦合氩/甲烷等离子体放电特性的影响。模拟结果表明:在高频频率为低频频率的整数倍时,高频与低频叠加显著,鞘层振荡更明显。随着低频频率的增加,电子密度、电荷密度、高能电子密度以及电子加热率都随之增大,其中电子密度随低频频率增加达14%。鞘层附近的电子温度随低频频率的增加出现下降趋势,大约下降12%。电子能量几率分布(EEPF)表现为双麦克斯韦分布,且当低频频率增加时,低能电子和高能电子的布局数都增多,同时讨论了低频频率的增加对各种离子的密度的影响,以及到达极板处的CH4+、CH3+粒子的角度与能量的变化分布。
-
关键词:
- 容性耦合等离子体放电 /
- Ar/CH4等离子体 /
- PIC/MCC模拟
In recent years, dual-frequency capacitively coupled plasma discharge technology has significant advantages for material processing. In this paper, the one-dimensional PIC/MCC simulation method is used to discuss the influence of low-frequency frequency on the discharge characteristics of capacitively coupled argon/methane plasma driven by dual-frequency (20MHz/100MHz) dipole and by the introduction of an external magnetic field. The simulation results show that when the high-frequency frequency is an integer multiple of the low-frequency frequency, the superposition of high and low frequencies is significant, and the sheath oscillation is more obvious. With the increase of low-frequency frequency, the electron density, charge density, high-energy electron density and electron heating rate all increase. The electron density increases to 14% with the low-frequency frequency increase. The electron temperature near the sheath shows a downward trend with the increase of low-frequency frequency, dropping by approximately 12%. The electron energy probability distribution (EEPF) shows a double Maxwell distribution. When the low-frequency frequency increases, the layout numbers of both low-energy electrons and high-energy electrons increase. Meanwhile, the influence of the low-frequency frequency increase on the various ions density, and the Angle and energy distribution of CH4+ and CH3+ particles reaching the plates are discussed.
In the Ar/CH4 plasma driven by dual-frequency by adding external magnetic field, the controllability of ion energy can effectively optimize the structure and performance of carbon-containing films. By regulating discharge parameters to control the ions incident Angle on the substrate, carbon-containing atoms can be deposited in a specific direction, thereby achieving the directional growth of carbon-containing films. This is significant for the preparation of graphene films, carbon nanotube arrays, etc. Meanwhile, the regulation of the ion incident Angle is helpful to improve the binding force between the carbon film and the substrate. This study found that the average energy of the ions reached its peak when the Angle of the ions was around 0.32. This peak was most significant at a low-frequency frequency of 15 MHz. The results in this paper provides a theoretical reference for the preparation of carbon films.-
Keywords:
- CCP discharge /
- Ar/CH4 plasma /
- PIC/MCC model
-
[1] Li Y M, Mann D, Rolandi M, Kim W 2004 Nano Lett. 4317
[2] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A. 31050825
[3] Jung C O, Chi K K, Hwang B G, Moon J T, Lee M Y, Lee J G 1999 Thin Solid Films. 341112
[4] Schulze J, Gans T, O'Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 407008
[5] Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D Appl. Phys. 37697
[6] Robiche J, Boyle P C, Turner M M, Ellingboe A R 2003 J. Phys. D: Appl. Phys. 361810
[7] Goto H H, Löwe H-D, Ohmi T 1992 J. Vac. Sci. Technol. A. 103048
[8] Goto H H, Löwe H-D, Ohmi T 1993 IEEE Trans. Semicond. Manuf. 658
[9] Tsai W, Mueller G, Lindquist R, Frazier B, Vahedi V 1996 J. Vac. Sci. Technol. B. 143276
[10] Sharma S, Turner M M 2014 J. Phys. D: Appl. Phys. 47285201
[11] Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas. 104545
[12] Yang S, Zhang W, Shen J, Liu H, Tang C, Xu Y, Cheng J, Shao J, Xiong J, Wang X, Liu H, Huang J, Zhang X, Lan H, Li Y 2024 AIP Adv. 14065104
[13] Sharma S, Sirse N, Turner M M, Ellingboe A R 2018 Phys. Plasmas. 25063501
[14] Yin G Q, Gao S S, Liu Z H, Yuan Q H 2022 Phys. Lett. A. 426127910
[15] Gao S S 2022 MSc (Lanzhou: Northwest Normal University) (in Chinese) [高闪闪2022硕士学位论文(兰州: 西北师范大学) ]
[16] Yang S L, Zhang Y, Wang H Y, Cui J W, Jiang W 2017 Plasma Processes Polym. 141700087
[17] Yang S L, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27035008
[18] Yan M H, Wu H H, Wu H, Peng Y L, Yang S L 2024 J Vac Sci Technol A. 42053007
[19] Sharma S, Patil S, Sengupta S, Sen A, Khrabrov A, Kaganovich I 2022 Phys. Plasmas. 29063501
[20] Sun J Y, Wen H, Zhang Q Z, Schulze J, Liu Y X, Wang Y N 2022 Plasma Sources Sci. Technol. 31085012
[21] Zheng B C, Wang K L, Grotjohn T, Schuelke T, Fan Q H 2019 Plasma Sources Sci. Technol. 2809LT03
[22] Yang S L, Zhang Y, Wang H Y, Wang S, Jiang W 2017 Phys. Plasmas. 24033504
[23] Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24025013
[24] Yin G Q, Jiang Y B, Yuan Q H 2024 Mod. Phys. Lett. B. 382450269
[25] Wang J-C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30075031
[26] Birdsall C K 1991 IEEE Trans. Plasma Sci. 1965
[27] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87179
[28] Verboncoeur J P 2001 J. Comput. Phys. 174421
[29] Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61165101(in Chinese) [沈向前, 谢泉, 肖清泉, 陈茜, 丰云2012物理学报61165101]
[30] Jin X L, Yang Z H 2006 Acta Phys. Sin. 555930(in Chinese) [金晓林, 杨中海2006物理学报555930]
[31] Song M Y, Yoon J S, Cho H, Itikawa Y, Karwasz G P, Kokoouline V, Nakamura Y, Tennyson J 2015 J. Phys. Chem. Ref. Data. 44023101
[32] Sun J Y, Zhang Q-Z, Liu J-R, Song Y-H, Wang Y-N 2020 Plasma Sources Sci. Technol. 29114002
计量
- 文章访问数: 8
- PDF下载量: 0
- 被引次数: 0