搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

延时可调的双波长激光与Sn靶作用的极紫外辐射特性

王天泽 胡桢麟 何梁 黄铸 刘懿贤 付轹文 林楠 冷雨欣

引用本文:
Citation:

延时可调的双波长激光与Sn靶作用的极紫外辐射特性

王天泽, 胡桢麟, 何梁, 黄铸, 刘懿贤, 付轹文, 林楠, 冷雨欣
cstr: 32037.14.aps.74.20250113

Characteristics of extreme ultraviolet emissions from interaction between delay-adjustable dual-wavelength laser and Sn target

WANG Tianze, HU Zhenlin, HE Liang, HUANG Zhu, LIU Yixian, FU Liwen, LIN Nan, LENG Yuxin
cstr: 32037.14.aps.74.20250113
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 激光-等离子体极紫外 (LPP-EUV) 光源是先进光刻系统中的核心子系统之一. 近年来, 固体激光逐渐成为新一代LPP-EUV光源的候选驱动激光方案. 然而, 由于工作波长较短, 固体激光具有较高的等离子体临界密度和光厚, 导致激光-极紫外光能量转换效率(CE)较低. 针对这一问题, 本工作提出采用波长为0.532 μm的预脉冲激光对等离子体密度进行调制, 对预脉冲和波长为1.064 μm的Nd:YAG驱动激光(主脉冲)在不同延时下与Sn靶作用的辐射特性进行了测量. 实验结果证明, 0.532 μm预脉冲对Nd:YAG驱动激光在26°和39°上CE的提升分别达到4%和18%; 实现了极紫外光能量角分布的有效调节, 形成各向同性发射; 实现了光谱形状优化, 在预脉冲作用下光谱纯度达到12.2%, 相较于仅主脉冲提升69%. 此外, 实验中还通过对等离子体发光轮廓进行时间分辨成像, 证明了极紫外光能量角分布与等离子体形态的相关性. 这表明0.532 μm预脉冲能够改变等离子体形态, 进而影响EUV能量角分布特性. 以上研究结果对固体激光驱动极紫外光源的辐射特性优化具有指导性意义.
    Laser-produced plasma extreme ultraviolet (LPP-EUV) source is one of the key technologies in advanced lithography systems. Recently, solid-state lasers have been proposed as an alternative drive laser for the next-generation LPP-EUV source. Compared with currently used CO2 lasers, solid-state lasers have higher electrical-optical efficiency, more compact size, and better pulse shape tunability. Although limited to shorter operating wavelengths, the solid-state lasers have higher critical plasma density and optical depth. Consequently, re-absorption and spectral broadening cause lower conversion efficiency (CE). Therefore, to optimize EUV emission features and improve CE, a 0.532-μm pre-pulse laser is utilized in this work to modulate the plasma density distribution. The pre-pulse and a 1.064-μm Nd: YAG laser (the main pulse) are incident on an Sn slab target co-axially. The EUV energy and spectra of the Sn plasma are characterized at various delay times. It is demonstrated that compared with the 1.064-μm single pulse, the 0.532-μm pre-pulse laser with short delay times of 10 ns and 20 ns respectively results in a 4% increase in CE at 26° and 18% increase at 39°. The angular distribution of EUV energy is modulated by the 0.532-μm pre-pulse. An isotropic emission can be obtained within a certain delay time. The spectral feature near 13.5 nm is optimized, and a spectral purity of 12.2% is improved by 69%. The laser spot sizes of 0.3 mm and 1 mm for the pre-pulse are compared in the experiment. The results show that the 1-mm spot size has a better modulation effect on the EUV emission. Moreover, the time-resolved visible-band plasma profile is captured by an ICCD with 1.6-ns gate width. The plasma size and the distance to the target surface are increased by the 0.532-μm pre-pulse, which suggests that the energy of the main pulse is deposited in the low-density pre-plasma plume instead of in the plasma near the target surface. The lower plasma density leads to an increase in CE and spectral purity. The angular distribution of EUV energy is found to be closely related to the plasma morphology, and defined as the ratio of the longitudinal size to lateral size of the plasma. This indicates that the variation of plasma morphology can influence the angular distribution of EUV energy, which is caused by the 0.532-μm pre-pulse. This work has guiding significance for optimizing the emission characteristics of solid-state laser driven EUV sources.
      通信作者: 林楠, nanlin@siom.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2023YFF0714905)、国家自然科学基金 (批准号: 62405336)、中国博士后科学基金第74批面上资助 (批准号: 2023M743643) 和国家资助博士后研究人员计划 (批准号: GZB20230791) 资助的课题.
      Corresponding author: LIN Nan, nanlin@siom.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0714905), the National Natural Science Foundation of China (Grant No. 62405336), the China Postdoctoral Science Foundation (Grant No. 2023M743643), and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (Grant No. GZB20230791).
    [1]

    Fomenkov I, Brandt D, Ershov A, Schafgans A, Tao Y, Vaschenko G, Rokitski S, Kats M, Vargas M, Purvis M, Rafac R, Fontaine B L, Dea S D, LaForge A, Stewart J, Chang S, Graham M, Riggs D, Taylor T, Abraham M, Brown D 2017 Adv. Opt. Technol. 6 173Google Scholar

    [2]

    Lin N, Chen Y Y, Wei X, Yang W H, Leng Y L 2023 High Power Laser Sci. Eng. 11 e64Google Scholar

    [3]

    Chen Y Y, Liu Z X, Lin N 2025 Opt. Lasers Eng. 189 108946Google Scholar

    [4]

    林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰, 冷雨欣 2022 激光与光电子学进展 59 0922002

    Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng Y X 2022 Laser & Optoelectronics Progress 59 0922002

    [5]

    Nowak T S, Yokotsuka T, Fujitaka K, Moriya M, Ohta T, Kurosu A, Sumitani A, Fujimoto J 2010 EUVL Workshop p2

    [6]

    Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2022 J. Opt. 24 054014Google Scholar

    [7]

    Sistrunk E, Alessi D, Bayramian A, Chesnut K, Erlandson A, Galvin T, Gibson D, Nguyen H, Reagan B, Schaffers K, Siders C, Spinka T, Haefner C 2019 Proc. SPIE 11034 1103407

    [8]

    Campos D, Harilal S S, Hassanein A 2010 Appl. Phys. Lett. 96 151501Google Scholar

    [9]

    Harilal S S, Sizyuk T, Hassanein A, Campos D, Hough P, Sizyuk V 2011 J. Appl. Phys. 109 063306Google Scholar

    [10]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [11]

    Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. Technol. 21 055003Google Scholar

    [12]

    Ando T, Fujioka S, Nishimura H, Ueda N, Yasuda Y, Nagai K, Norimatsu T, Murakami M, Nishihara K, Miyanaga N, Izawa Y, Mima K, Sunahara A 2006 Appl. Phys. Lett. 89 151501Google Scholar

    [13]

    Harilal S S, O'Shay B, Tillack M S, Tao Y, Paguio R, Nikroo A, Back C A 2006 J. Phys. D: Appl. Phys. 39 484Google Scholar

    [14]

    Hayden P, Cummings A, Murphy N, O’Sullivan G, Sheridan P, White J, Dunne P 2006 J. Appl. Phys. 99 093302Google Scholar

    [15]

    Lan H, Wang X B, Zuo D L 2016 Chin. Phys. B 25 035202Google Scholar

    [16]

    Si M Q, Wen Z L, Zhang Q J, Dou Y P, Li B C, Song X W, Xie Z, Lin J Q 2023 Acta Physica Sinica 72 065201Google Scholar

    [17]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [18]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [19]

    Cummins T, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Hayden P 2014 Appl. Phys. Lett. 105 044101Google Scholar

    [20]

    Tao Y, Tillack M S, Harilal S S, Sequoia K L, Najmabadi F 2007 J. Appl. Phys. 101 023305Google Scholar

    [21]

    Tao Y, Tillack M S, Harilal S S, Sequoia K L, Burdt R A, Najmabadi F 2007 Opt. Lett. 32 1338Google Scholar

    [22]

    Garbanlabaune C, Fabre E, Max C E, Fabbro R, Amiranoff F, Virmont J, Weinfeld M, Michard A 1982 Phys. Rev. Lett. 48 1018Google Scholar

    [23]

    Wang T Z, Hu Z L, He L, Lin N, Leng Y X, Chen W B 2025 Vacuum 231 113805Google Scholar

    [24]

    胡桢麟, 何梁, 王天泽, 林楠, 冷雨欣 2025 中国激光 52 0601001Google Scholar

    Hu Z L, He L, Wang T Z, Lin N, Leng Y X 2025 Chin. J. Lasers 52 0601001Google Scholar

    [25]

    何梁, 胡桢麟, 王天泽, 林楠, 冷雨欣 2025 激光与光电子学进展 62 0314001Google Scholar

    He L, Hu Z L, Wang T Z, Lin N, Leng Y X 2025 Laser Optoelectron. Prog. 62 0314001Google Scholar

    [26]

    蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100Google Scholar

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100Google Scholar

    [27]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [28]

    Morris O, O’Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503Google Scholar

    [29]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Sheil J, Scheers J, Kurilovich D, Bayerle A, Schafgans A A, Purvis M, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato O O 2019 Appl. Phys. Lett. 115 124101Google Scholar

    [30]

    Tao Y, Harilal S S, Tillack M S, Sequoia K L, O'Shay B, Najmabadi F 2006 Opt. Lett. 31 2492Google Scholar

  • 图 1  实验布局示意图, 预脉冲 (绿色) 和主脉冲 (红色) 经f400透镜聚焦同轴入射Sn靶面, 入射角为0°, 两台EUV能量计与激光入射角度的夹角分别为26°和39°, EUV光谱仪与激光入射方向夹角为50°, 等离子体在可见光波段的发射通过f200透镜成像并由ICCD采集

    Fig. 1.  Schematic of the experimental layout. The pre-pulse (depicted in green) and the main pulse (depicted in red) are focused by a f400 lens co-axially and are incident onto the Sn target surface, the incident angle is 0°, the angle between the laser incident direction and the two EUV monitors are 26° and 39°, respectively, the observation angle of the EUV spectrometer is 50°, the visible band emission of the Sn plasma is imaged by a f200 lens and captured by an ICCD.

    图 2  不同预脉冲光斑大小下的CE随延时变化趋势, 虚线为主脉冲单独作用时的CE值 (a) 0.3 mm光斑预脉冲下26° (红色方块)和39° (蓝色圆形)的CE随延时变化趋势; (b) 1 mm光斑预脉冲下26° (红色方块)和39° (蓝色圆形)的CE随延时变化趋势

    Fig. 2.  The dependency of CE on delay time for different pre-pulse spot sizes. The dashed lines mark the CE values when the main pulse irradiates the target without the pre-pulse: (a) The dependency of 26° (red square) and 39° (blue circle) CE on the delay time for 0.3 mm pre-pulse spot; (b) the dependency of 26° (red square) and 39° (blue circle) CE on the delay time for 1 mm pre-pulse spot.

    图 3  不同预脉冲光斑大小下的全谱归一化EUV光谱, 图中紫色阴影区域对应EUV带内辐射波段  (a) 0.3 mm光斑预脉冲作用时不同延时下的EUV光谱; (b) 1 mm光斑预脉冲作用时不同延时下的EUV光谱

    Fig. 3.  The normalized EUV spectra at different pre-pulse spot sizes, the violet shadow area corresponds to 13.5 nm 2% bandwidth: (a) The EUV spectra at different delay times for 0.3 mm pre-pulse spot; (b) the EUV spectra at different delay times for 1 mm pre-pulse spot.

    图 4  0.3 mm (黑色方块) 与1 mm (红色圆形) 预脉冲光斑大小下SP随延时变化趋势

    Fig. 4.  Dependency of SP on delay for 0.3 mm (black square) and 1 mm (red circle) laser spot sizes.

    图 5  等离子体成像测量 (a)—(c) 0, 50, 1000 ns时的等离子体图像, 图像左侧为靶面位置, 激光入射方向为从右到左, 所有图像设置为相同对比度范围; (d) 0.3 mm (黑色方块) 和1 mm (红色圆形) 预脉冲光斑大小下的等离子体纵向尺寸随延时变化趋势; (e) 0.3 mm (黑色方块) 和1 mm (红色圆形) 预脉冲光斑大小下等离子体纵向中心位置随延时变化趋势

    Fig. 5.  The plasma imaging measurements: (a)–(c) The plasma images at 0, 50, 1000 ns, the left side of the image is the target surface, and the laser is incident from the right side, all images are set to the same contrast ratio; (d) the dependency of longitudinal size of the plasma on delay time for 0.3 mm (black square) and 1 mm (red circle) laser spot sizes; (e) the dependency of longitudinal central position of the plasma on delay time for 0.3 mm (black square) and 1 mm (red circle) laser spot sizes.

    图 6  CE比例和等离子体纵向/横向长度比 (a) 0.3 mm光斑预脉冲下39°和26°的CE之比和等离子体纵/横比随延时变化趋势; (b) 1 mm光斑预脉冲下39°和26°的CE之比和等离子体纵/横比随延时变化趋势

    Fig. 6.  The CE ratio and the longitudinal/lateral size ratio of the plasma: (a) The dependency of the 39°/26° CE ratio and the longitudinal/lateral size ratio on delay time for 0.3 mm pre-pulse; (b) the dependency of the 39°/26° CE ratio and the longitudinal/lateral size ratio on delay time for 1 mm pre-pulse.

  • [1]

    Fomenkov I, Brandt D, Ershov A, Schafgans A, Tao Y, Vaschenko G, Rokitski S, Kats M, Vargas M, Purvis M, Rafac R, Fontaine B L, Dea S D, LaForge A, Stewart J, Chang S, Graham M, Riggs D, Taylor T, Abraham M, Brown D 2017 Adv. Opt. Technol. 6 173Google Scholar

    [2]

    Lin N, Chen Y Y, Wei X, Yang W H, Leng Y L 2023 High Power Laser Sci. Eng. 11 e64Google Scholar

    [3]

    Chen Y Y, Liu Z X, Lin N 2025 Opt. Lasers Eng. 189 108946Google Scholar

    [4]

    林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰, 冷雨欣 2022 激光与光电子学进展 59 0922002

    Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng Y X 2022 Laser & Optoelectronics Progress 59 0922002

    [5]

    Nowak T S, Yokotsuka T, Fujitaka K, Moriya M, Ohta T, Kurosu A, Sumitani A, Fujimoto J 2010 EUVL Workshop p2

    [6]

    Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2022 J. Opt. 24 054014Google Scholar

    [7]

    Sistrunk E, Alessi D, Bayramian A, Chesnut K, Erlandson A, Galvin T, Gibson D, Nguyen H, Reagan B, Schaffers K, Siders C, Spinka T, Haefner C 2019 Proc. SPIE 11034 1103407

    [8]

    Campos D, Harilal S S, Hassanein A 2010 Appl. Phys. Lett. 96 151501Google Scholar

    [9]

    Harilal S S, Sizyuk T, Hassanein A, Campos D, Hough P, Sizyuk V 2011 J. Appl. Phys. 109 063306Google Scholar

    [10]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [11]

    Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. Technol. 21 055003Google Scholar

    [12]

    Ando T, Fujioka S, Nishimura H, Ueda N, Yasuda Y, Nagai K, Norimatsu T, Murakami M, Nishihara K, Miyanaga N, Izawa Y, Mima K, Sunahara A 2006 Appl. Phys. Lett. 89 151501Google Scholar

    [13]

    Harilal S S, O'Shay B, Tillack M S, Tao Y, Paguio R, Nikroo A, Back C A 2006 J. Phys. D: Appl. Phys. 39 484Google Scholar

    [14]

    Hayden P, Cummings A, Murphy N, O’Sullivan G, Sheridan P, White J, Dunne P 2006 J. Appl. Phys. 99 093302Google Scholar

    [15]

    Lan H, Wang X B, Zuo D L 2016 Chin. Phys. B 25 035202Google Scholar

    [16]

    Si M Q, Wen Z L, Zhang Q J, Dou Y P, Li B C, Song X W, Xie Z, Lin J Q 2023 Acta Physica Sinica 72 065201Google Scholar

    [17]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [18]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [19]

    Cummins T, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Hayden P 2014 Appl. Phys. Lett. 105 044101Google Scholar

    [20]

    Tao Y, Tillack M S, Harilal S S, Sequoia K L, Najmabadi F 2007 J. Appl. Phys. 101 023305Google Scholar

    [21]

    Tao Y, Tillack M S, Harilal S S, Sequoia K L, Burdt R A, Najmabadi F 2007 Opt. Lett. 32 1338Google Scholar

    [22]

    Garbanlabaune C, Fabre E, Max C E, Fabbro R, Amiranoff F, Virmont J, Weinfeld M, Michard A 1982 Phys. Rev. Lett. 48 1018Google Scholar

    [23]

    Wang T Z, Hu Z L, He L, Lin N, Leng Y X, Chen W B 2025 Vacuum 231 113805Google Scholar

    [24]

    胡桢麟, 何梁, 王天泽, 林楠, 冷雨欣 2025 中国激光 52 0601001Google Scholar

    Hu Z L, He L, Wang T Z, Lin N, Leng Y X 2025 Chin. J. Lasers 52 0601001Google Scholar

    [25]

    何梁, 胡桢麟, 王天泽, 林楠, 冷雨欣 2025 激光与光电子学进展 62 0314001Google Scholar

    He L, Hu Z L, Wang T Z, Lin N, Leng Y X 2025 Laser Optoelectron. Prog. 62 0314001Google Scholar

    [26]

    蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100Google Scholar

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100Google Scholar

    [27]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [28]

    Morris O, O’Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503Google Scholar

    [29]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Sheil J, Scheers J, Kurilovich D, Bayerle A, Schafgans A A, Purvis M, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato O O 2019 Appl. Phys. Lett. 115 124101Google Scholar

    [30]

    Tao Y, Harilal S S, Tillack M S, Sequoia K L, O'Shay B, Najmabadi F 2006 Opt. Lett. 31 2492Google Scholar

  • [1] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [2] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [3] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [4] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [5] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [6] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [7] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率. 物理学报, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [8] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [9] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [10] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [11] 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 孟立民, 王兆华, 郑君, 盛政明, 魏志义, 李英骏, 张杰. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [12] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [13] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [14] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [16] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [17] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [18] 徐妙华, 陈黎明, 李玉同, 远晓辉, 刘运全, Kazuhisa Nakajima, Toshi Tajima, 王兆华, 魏志义, 赵 卫, 张 杰. 超短脉冲强激光与固体靶相互作用中Kα射线的实验研究. 物理学报, 2007, 56(1): 353-358. doi: 10.7498/aps.56.353
    [19] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] 王屹山, 陈国夫, 于连君, 赵尚弘, 赵 卫. 高效、高峰值功率蓝光飞秒脉冲产生研究. 物理学报, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
计量
  • 文章访问数:  286
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-24
  • 修回日期:  2025-04-21
  • 上网日期:  2025-05-27

/

返回文章
返回