搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压非平衡等离子体甲烷干法重整零维数值模拟

钟旺燊 陈野力 钱沐杨 刘三秋 张家良 王德真

引用本文:
Citation:

大气压非平衡等离子体甲烷干法重整零维数值模拟

钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真

Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma

Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen
PDF
HTML
导出引用
  • 大气压非平衡等离子体由于其独特的非平衡特性, 可为甲烷和二氧化碳稳定温室气体分子活化和重整提供非热平衡和活化环境. 本文采用了零维等离子体化学反应动力学模型, 考虑了详细的CH4/CO2等离子体化学反应集, 重点研究了反应气体CH4/CO2摩尔分数(5%—95%)对大气压非平衡等离子体甲烷干法重整制合成气和重要含氧化合物的影响. 首先, 给出了进料气体不同体积比时电子密度和温度随时间的演化规律, 结果表明初始甲烷摩尔分数的提高有利于获得较高的电子密度和电子温度. 随后, 讨论了主要自由基和离子数密度在不同的甲烷摩尔分数下随着时间的变化规律, 并给出了反应气体的转化率、合成气体和重要含氧化合物的选择性. 此外, 还明确了合成气和含氧化合物主要生成和损耗的化学反应路径, 发现甲基和羟基是合成含氧化合物的关键中间体. 最后, 归纳总结给出了主要等离子体粒子之间的总体等离子体化学反应流程图.
    Recently, atmospheric non-equilibrium plasma has been proposed as a potential and novel type of “reaction carrier” for the activation and conversion of greenhouse gases (methane and carbon dioxide) into value-added chemicals, due to its unique non-equilibrium characteristics. In this paper, a zero-dimensional plasma chemical reaction kinetic model in CH4/CO2 gas mixture is constructed, with an emphasis on reaction mechanism for plasma dry reforming of methane to syngas and oxygenates. Especially, the effect of the CH4 molar fraction (5%–95%) on plasma dry reforming of methane is investigated. First, the time evolution of electron temperature and density with initial methane content is presented, and the results show that both the electron temperature and electron density vary periodically with the applied triangular power density pulse, and the higher initial methane content in gas mixture is favored for a larger electron temperature and density. Subsequently, the time evolution of number densities of free radicals, ions and molecules at different CH4/CO2 molar fraction are given. The higher the initial methane content, the greater the number densities of H, H, H2, and CH3, leading to insufficient oxygen atoms to participate in the reaction for oxygenates synthesis. The conversions of inlet gases, the selectivities of syngas and important oxygenates are also calculated. The conversion rate of carbon dioxide increases with the increasing methane content, but the conversion rate of methane is insensitive to the variation of methane content. As methane mole fraction is increased from 5% to 95%, the selectivities of important oxygenates (CH3OH and CH2O) are relatively low (<5%), and the selectivity of H2 gradually increases from 13.0% to 24.6%, while the selectivity of CO significantly decreases from 58.9% to 9.7%. Moreover, the dominant reaction pathways governing production and destruction of H2, CO, CH2O and CH3OH are determined, and CH3 and OH radicals are found to be the key intermediate for the production of valuable oxygenates. Finally, a schematic overview of the transformation relationship between dominant plasma species is summarized and shown to clearly reveal intrinsic reaction mechanism of dry reforming of methane in atmospheric non-equilibrium plasma.
      通信作者: 钱沐杨, qianmuyang@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12065019, 11705080)资助的课题
      Corresponding author: Qian Mu-Yang, qianmuyang@ncu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 12065019, 11705080)
    [1]

    Gangadharan P, Kanchi K C, Lou H H 2012 Chem. Eng. Res. Des. 90 1956Google Scholar

    [2]

    Asinger F 1986 Methanol-Chemie und Energierohstoff (Heidelberg: Springer) pp1−9

    [3]

    Fakley M E, Jennings J R, Spencer M S 1989 J. Catal. 118 483Google Scholar

    [4]

    Abdulrasheed A, Jalil A A, Gambo Y, Ibrahim M, Hambali H U, Hamid M Y S 2019 Renewable Sustainable Energy Rev. 108 175Google Scholar

    [5]

    Jang W J, Shim J O, Kim H M, Yoo S Y, Roh H S 2019 Catal. Today 324 15Google Scholar

    [6]

    Aramouni N A K, Touma J G, Tarboush B A, Zeaiter J, Ahmad M N 2018 Renewable Sustainable Energy Rev. 82 2570Google Scholar

    [7]

    Wang Y, Yao L, Wang S, Mao D, Hu C 2018 Fuel Process. Technol. 169 199Google Scholar

    [8]

    Abdullah B, Ghani N A A, Vo D V N 2017 J. Cleaner Prod. 162 170Google Scholar

    [9]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC) pp19−342

    [10]

    Zhang X, Wenren Y, Zhou W, Han J, Lu H, Zhu Z, Wu Z, Cha M S 2020 J. Phys. D: Appl. Phys. 53 194002Google Scholar

    [11]

    Brune L, Ozkan A, Genty E, Bocarmé T V, Reniers F 2018 J. Phys. D: Appl. Phys. 51 234002Google Scholar

    [12]

    Maqueo P D G, Coulombe S, Bergthorson J M 2019 J. Phys. D: Appl. Phys. 52 274002Google Scholar

    [13]

    Alawi N M, Sunarso J, Pham G H, Barifcani A, Nguyen M H, Liu S 2020 J. Ind. Eng. Chem. 85 118Google Scholar

    [14]

    王晓玲, 高远, 张帅, 孙昊, 李杰, 邵涛 2019 电工技术学报 34 1329

    Wang X L, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Trans. Chin. Electrotechn. Soc. 34 1329

    [15]

    Wu A, Yan J, Zhang H, Zhang M, Du C, Li X 2014 Int. J. Hydrogen Energy 39 17656Google Scholar

    [16]

    Khoja A H, Tahir M, Amin N A S 2019 Energy Convers. Manage. 183 529Google Scholar

    [17]

    王建龙, 丁芳, 朱晓东 2015 物理学报 64 045206Google Scholar

    Wang J L, Ding F, Zhu X D 2015 Acta Phys. Sin. 64 045206Google Scholar

    [18]

    赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰 2018 物理学报 67 085202Google Scholar

    Zhao Y F, Wang C, Wang W Z, Li L, Sun H, Shao T, Pan J 2018 Acta Phys. Sin. 67 085202Google Scholar

    [19]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 1366Google Scholar

    [20]

    Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704Google Scholar

    [21]

    Snoeckx R, Aerts R, Tu X, Bogaerts A 2013 J. Phys. Chem. C 117 4957Google Scholar

    [22]

    Liu S, Winter L R, Chen J G 2020 ACS Catal. 10 2855Google Scholar

    [23]

    Bogaerts A, De Bie C, Snoecks R, Kozak T 2017 Plasma Processes Polym. 14 1600070Google Scholar

    [24]

    De Bie C, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331Google Scholar

    [25]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204Google Scholar

    [26]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [27]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [28]

    Luo Y C, Lietz A M, Yatom S, Kushner M J, Bruggeman P J 2019 J. Phys. D: Appl. Phys. 52 044003Google Scholar

    [29]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [30]

    Brown P N, Byrne G D, Hindmarsh A C 1989 SIAM J. Sci. Stat. Comput. 10 1038Google Scholar

    [31]

    Zhang S, Gao Y, Sun H, Bai H, Wang R X, Shao T 2018 J. Phys. D: Appl. Phys. 51 274005Google Scholar

    [32]

    Bai C J, Wang L J, Li L, Dong X, Xiao Q H, Liu Z Q, Sun J H, Pan J 2019 AIP Adv. 9 035023Google Scholar

  • 图 1  甲烷摩尔分数为10%, 30%, 50%, 70%和90%时的电子温度随时间演化规律

    Fig. 1.  Electron temperature as a function of time for methane mole fractions of 10%, 30%, 50%, 70% and 90%.

    图 2  甲烷摩尔分数为10%, 30%, 50%, 70%和90%时的电子密度随时间变化趋势

    Fig. 2.  Electron density as a function of time for methane mole fractions of 10%, 30%, 50%, 70% and 90%.

    图 3  (a) 10%, (b) 50%和(c) 90%甲烷摩尔分数时主要自由基的数密度随时间变化趋势, 以及(d) 主要自由基的周期平均值随甲烷摩尔分数的变化

    Fig. 3.  The number densities of main radicals as a function of time for methane mole fractions of (a) 10%, (b) 50%, (c) 90%, and (d) time averaged number densities of main radicals as a function of initial CH4 fraction.

    图 4  (a) 10%, (b) 50%和(c) 90%甲烷摩尔分数时主要离子的数密度随时间的变化趋势, 以及(d)主要离子的周期平均值随甲烷摩尔分数的变化

    Fig. 4.  The number densities of main ions as a function of time for methane mole fractions of (a) 10%, (b) 50%, (c) 90%, and (d) time averaged densities of main ions as a function of initial CH4 fraction.

    图 5  (a) 10%, (b) 50%和(c) 90%甲烷摩尔分数时主要分子数密度随时间的变化规律, 及(d)主要分子的周期平均值随甲烷摩尔分数的变化

    Fig. 5.  The number densities of main molecules as a function of time for methane mole fractions of (a) 10%, (b) 50%, (c) 90%, and (d) time averaged densities of main molecules as a function of initial CH4 fraction.

    图 6  (a)进料气体的转化率和(b)合成气和重要含氧化合物的选择性随着甲烷摩尔分数的变化趋势

    Fig. 6.  Time-averaged (a) conversion, (b) selectivity as a function of initial CH4 mole fraction.

    图 10  H2的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Fig. 10.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of H2 as a function of methane mole fraction (a) 10%, (b) 50%, (c) 90%.

    图 8  CH3OH的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Fig. 8.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of CH3OH as a function of methane mole fraction: (a) 10%, (b) 50%, (c) 90%.

    图 9  CO的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Fig. 9.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of CO as a function of methane mole fraction (a) 10%, (b) 50%, (c) 90%.

    图 7  CH2O的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Fig. 7.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of CH2O as a function of methane mole fraction: (a) 10%, (b) 50%, (c) 90%.

    图 11  CH4/CO2摩尔分数比为1:1的大气压非平衡等离子体DRM反应总体流程图. 箭头的粗细与时间平均的净反应速率成线性正比

    Fig. 11.  Schematic overview of the dominant reaction pathways for the conversion of CH4 and CO2 into representative higher oxygenates and syngas in atmospheric non-equilibrium plasma for a 1:1 CH4/CO2 gas mixture. The thickness of the arrows is linearly proportional to time-averaged rate of net reaction.

  • [1]

    Gangadharan P, Kanchi K C, Lou H H 2012 Chem. Eng. Res. Des. 90 1956Google Scholar

    [2]

    Asinger F 1986 Methanol-Chemie und Energierohstoff (Heidelberg: Springer) pp1−9

    [3]

    Fakley M E, Jennings J R, Spencer M S 1989 J. Catal. 118 483Google Scholar

    [4]

    Abdulrasheed A, Jalil A A, Gambo Y, Ibrahim M, Hambali H U, Hamid M Y S 2019 Renewable Sustainable Energy Rev. 108 175Google Scholar

    [5]

    Jang W J, Shim J O, Kim H M, Yoo S Y, Roh H S 2019 Catal. Today 324 15Google Scholar

    [6]

    Aramouni N A K, Touma J G, Tarboush B A, Zeaiter J, Ahmad M N 2018 Renewable Sustainable Energy Rev. 82 2570Google Scholar

    [7]

    Wang Y, Yao L, Wang S, Mao D, Hu C 2018 Fuel Process. Technol. 169 199Google Scholar

    [8]

    Abdullah B, Ghani N A A, Vo D V N 2017 J. Cleaner Prod. 162 170Google Scholar

    [9]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC) pp19−342

    [10]

    Zhang X, Wenren Y, Zhou W, Han J, Lu H, Zhu Z, Wu Z, Cha M S 2020 J. Phys. D: Appl. Phys. 53 194002Google Scholar

    [11]

    Brune L, Ozkan A, Genty E, Bocarmé T V, Reniers F 2018 J. Phys. D: Appl. Phys. 51 234002Google Scholar

    [12]

    Maqueo P D G, Coulombe S, Bergthorson J M 2019 J. Phys. D: Appl. Phys. 52 274002Google Scholar

    [13]

    Alawi N M, Sunarso J, Pham G H, Barifcani A, Nguyen M H, Liu S 2020 J. Ind. Eng. Chem. 85 118Google Scholar

    [14]

    王晓玲, 高远, 张帅, 孙昊, 李杰, 邵涛 2019 电工技术学报 34 1329

    Wang X L, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Trans. Chin. Electrotechn. Soc. 34 1329

    [15]

    Wu A, Yan J, Zhang H, Zhang M, Du C, Li X 2014 Int. J. Hydrogen Energy 39 17656Google Scholar

    [16]

    Khoja A H, Tahir M, Amin N A S 2019 Energy Convers. Manage. 183 529Google Scholar

    [17]

    王建龙, 丁芳, 朱晓东 2015 物理学报 64 045206Google Scholar

    Wang J L, Ding F, Zhu X D 2015 Acta Phys. Sin. 64 045206Google Scholar

    [18]

    赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰 2018 物理学报 67 085202Google Scholar

    Zhao Y F, Wang C, Wang W Z, Li L, Sun H, Shao T, Pan J 2018 Acta Phys. Sin. 67 085202Google Scholar

    [19]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 1366Google Scholar

    [20]

    Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704Google Scholar

    [21]

    Snoeckx R, Aerts R, Tu X, Bogaerts A 2013 J. Phys. Chem. C 117 4957Google Scholar

    [22]

    Liu S, Winter L R, Chen J G 2020 ACS Catal. 10 2855Google Scholar

    [23]

    Bogaerts A, De Bie C, Snoecks R, Kozak T 2017 Plasma Processes Polym. 14 1600070Google Scholar

    [24]

    De Bie C, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331Google Scholar

    [25]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204Google Scholar

    [26]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [27]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [28]

    Luo Y C, Lietz A M, Yatom S, Kushner M J, Bruggeman P J 2019 J. Phys. D: Appl. Phys. 52 044003Google Scholar

    [29]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [30]

    Brown P N, Byrne G D, Hindmarsh A C 1989 SIAM J. Sci. Stat. Comput. 10 1038Google Scholar

    [31]

    Zhang S, Gao Y, Sun H, Bai H, Wang R X, Shao T 2018 J. Phys. D: Appl. Phys. 51 274005Google Scholar

    [32]

    Bai C J, Wang L J, Li L, Dong X, Xiao Q H, Liu Z Q, Sun J H, Pan J 2019 AIP Adv. 9 035023Google Scholar

  • [1] 周雄峰, 陈彬, 刘坤. 大气压交流氩气放电等离子体射流特性. 物理学报, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [2] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [3] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [4] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [5] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [6] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究. 物理学报, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [7] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [8] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [9] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [10] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [11] 石兰芳, 欧阳成, 陈丽华, 莫嘉琪. 一类大气等离子体反应扩散模型的解法. 物理学报, 2012, 61(5): 050203. doi: 10.7498/aps.61.050203
    [12] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [13] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究. 物理学报, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [14] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [15] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [16] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [17] 周翔, 张萱, 刘爱芬, 曾祥华. FC(O)O2的结构及其自由基与NO反应的微观机理研究. 物理学报, 2010, 59(7): 5128-5134. doi: 10.7498/aps.59.5128
    [18] 王佩怡, 杨 春, 李来才, 李言荣. SrTiO3薄膜生长初期Sr,Ti,O原子分子反应机理的理论研究. 物理学报, 2008, 57(4): 2340-2346. doi: 10.7498/aps.57.2340
    [19] 赵 江, 崔 磊, 曾祥华, 徐秀莲. FC(O)O自由基与NO反应机理的理论研究. 物理学报, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
    [20] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究. 物理学报, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
计量
  • 文章访问数:  5903
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2020-12-25
  • 上网日期:  2021-03-29
  • 刊出日期:  2021-04-05

/

返回文章
返回