搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长程表面等离子体的增强效应

张凯 杜春光 高健存

引用本文:
Citation:

长程表面等离子体的增强效应

张凯, 杜春光, 高健存

Long-range surface plasmon polariton enhancement in double-electrode structure

Zhang Kai, Du Chun-Guang, Gao Jian-Cun
PDF
导出引用
  • 研究了双层金属薄膜构型中构型参数对长程表面等离子体的影响,并发现了衰减全反射激发方法下长程表面等离子体的增强效应.以特征矩阵算法为基础,通过数值计算构型的反射谱,研究构型参数的变化对反射谱的影响.发现由于衰减全反射激发方法中耦合器的存在导致的非对称特性,会使双层金属薄膜构型中的长程表面等离子体拥有本征模式特性以外的有趣特性,如长程模式得到增强而另一支受到抑制,从而使能量更为集中在希望被激发的一支.研究结果对非对称激发构型中的长程表面等离子体研究具有启发意义.
    Surface plasmon polariton (SPP) is a kind of highly confined surface-wave mode associated with collective electron charge oscillation. A remarkable feature of the SPP is its highly sensitive response to change in permittivity or refractive index of the material in the vicinity of the metal surface, and it can be used as a high sensitive sensor. Long-range surface plasmon polariton (LRSPP) is a low-loss surface wave supported by symmetric structure, such as symmetric insulator-metal-insulator (IMI) slab. In most of previous investigations, only the properties of the eigenmodes of LRSPPs are analyzed. In this paper, however, we investigate the phenomena associated with the excitations of LRSPPs which cannot be explained by the eigenmode theory. Double-electrode structures are studied in this paper. For simplicity, we assume that the structures are symmetric if no coupler is introduced. When the coupler is introduced, however, this system can have interesting new properties. The influence of the parameters of the structure on the LRSPP is discussed in detail, and the enhancement effect of the LRSPP excited by the attenuated total reflectance (ATR) method is found. The research on the parameters is based on the reflectivity and the field enhancement calculated by the characteristic matrix technique. Taking the coupler into consideration, there are six media in the double-electrode structure excited by ATR. It turns out that the LRSPP can have new properties other than those of eigenmodes supported by symmetric structures without couplers. This is due to the asymmetry brought by the coupler in the ATR method, thus it is possible to enhance the wanted mode while suppress the other mode. The asymmetry brought by the coupler in the ATR method leads to new and interesting phenomena. If the distance between the coupler and the closer metal film (denoted by s) and that between the two metal films (denoted by t) are properly chosen, the long-range mode will be enhanced while the other mode will be suppressed. It should be emphasized that s is a crucial parameter. When s is small, the long-range mode is suppressed and the other mode is enhanced; when s is large, the energy focuses more on the long-range mode. However, when s is too large, the exciting efficiency is very low. It is found that the appropriate parameters in the ATR-mothod-exciting double electrode structure are s=350 nm, t=(1)/4λ, where λ is the wavelength of the source light in vacuum and is taken to be 546.1 nm, and the thickness of each metal Ag film is taken to be 36 nm. These parameters are important for future experiments to observe this kind of phenomenon.It is also found that both the field enhancement factor and its sensitivity to the refractivity of the output-end medium are very high in LRSPP case, which is possible to be used as a biological or chemical sensor. The asymmetry brought by the coupler in the ATR method makes LRSPP have new and interesting features, one of which is the enhancement of the long-range mode. The present research has heuristic significance for studying the long-range surface plasmon in asymmetric excitation configuration.
    [1]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, Heidelberg: Springer-Verlag) pp8, 11

    [2]

    Luo X G, Teruya I 2004 Appl. Phys. Lett. 84 4780

    [3]

    Werayut S, Nicholas F, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085

    [4]

    Wong W R, Sekaran S D, Adikan F R M, Berini P 2016 Biosens. Bioelectron. 78 132

    [5]

    Hyungsoon I, Shao H L, Park Y 2014 Nat. Biotechnol. 32 490

    [6]

    Zeng S W, Baillargeat D, Ho H P, Yong K T 2014 Chem. Soc. Rev. 43 3426

    [7]

    Koji T, Jakub D, Wolfgang K 2011 Opt. Express 19 11090

    [8]

    Zhang X L, Song J F, Lo G Q, Kwong D L 2010 Opt. Express 18 22462

    [9]

    Wong W R, Faisal R M A, Pierre B 2015 Opt. Express 23 031098

    [10]

    Nie S M, Emery S R 1997 Science 275 1102

    [11]

    Berini P 2009 Adv. Opt. Photon. 1 484

    [12]

    Wood R W 1902 Philos. Mag. 4 396

    [13]

    Otto A 1968 Zeits Phys. 216 398

    [14]

    Kretschmann E, Raether H 1968 Z. Naturforsch 23 2135

    [15]

    Abeles F, Lopez-Rios T 1974 Opt. Commun. 11 89

    [16]

    Kliewer K L, Fuchs R 1967 Phys. Rev. 153 498

    [17]

    Kovacs G J 1979 Thin Solid Films 60 33

    [18]

    Stegeman G I, Burke J J 1983 Appl. Phys. Lett. 43 221

    [19]

    Economou E N 1969 Phys. Rev. 182 539

    [20]

    Yoon J, Song S H, Park S 2007 Opt. Express 15 17151

    [21]

    Charbonneau R, Lahoud N, Mattiussi G, Berini P 2005 Opt. Express 13 977

    [22]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186

    [23]

    Homola J 2006 Surface Plasmon Resonance Based Sensors (Berlin Heidelberg: Springer) p3-44

    [24]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [25]

    Kovacs G J, Scott G D 1978 Can. J. Phys. 56 1235

    [26]

    Lin C W, Chen K P, Hsiao C N, Lin S, Lee C K 2006 Sens Actuators B: Chem. 113 169

    [27]

    Otto A 1969 Zeits. Phys. A: Hadrons and Nuclei 219 227

  • [1]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, Heidelberg: Springer-Verlag) pp8, 11

    [2]

    Luo X G, Teruya I 2004 Appl. Phys. Lett. 84 4780

    [3]

    Werayut S, Nicholas F, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085

    [4]

    Wong W R, Sekaran S D, Adikan F R M, Berini P 2016 Biosens. Bioelectron. 78 132

    [5]

    Hyungsoon I, Shao H L, Park Y 2014 Nat. Biotechnol. 32 490

    [6]

    Zeng S W, Baillargeat D, Ho H P, Yong K T 2014 Chem. Soc. Rev. 43 3426

    [7]

    Koji T, Jakub D, Wolfgang K 2011 Opt. Express 19 11090

    [8]

    Zhang X L, Song J F, Lo G Q, Kwong D L 2010 Opt. Express 18 22462

    [9]

    Wong W R, Faisal R M A, Pierre B 2015 Opt. Express 23 031098

    [10]

    Nie S M, Emery S R 1997 Science 275 1102

    [11]

    Berini P 2009 Adv. Opt. Photon. 1 484

    [12]

    Wood R W 1902 Philos. Mag. 4 396

    [13]

    Otto A 1968 Zeits Phys. 216 398

    [14]

    Kretschmann E, Raether H 1968 Z. Naturforsch 23 2135

    [15]

    Abeles F, Lopez-Rios T 1974 Opt. Commun. 11 89

    [16]

    Kliewer K L, Fuchs R 1967 Phys. Rev. 153 498

    [17]

    Kovacs G J 1979 Thin Solid Films 60 33

    [18]

    Stegeman G I, Burke J J 1983 Appl. Phys. Lett. 43 221

    [19]

    Economou E N 1969 Phys. Rev. 182 539

    [20]

    Yoon J, Song S H, Park S 2007 Opt. Express 15 17151

    [21]

    Charbonneau R, Lahoud N, Mattiussi G, Berini P 2005 Opt. Express 13 977

    [22]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186

    [23]

    Homola J 2006 Surface Plasmon Resonance Based Sensors (Berlin Heidelberg: Springer) p3-44

    [24]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [25]

    Kovacs G J, Scott G D 1978 Can. J. Phys. 56 1235

    [26]

    Lin C W, Chen K P, Hsiao C N, Lin S, Lee C K 2006 Sens Actuators B: Chem. 113 169

    [27]

    Otto A 1969 Zeits. Phys. A: Hadrons and Nuclei 219 227

  • [1] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用. 物理学报, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [2] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案. 物理学报, 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [3] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [4] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [5] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [6] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [7] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [8] 赖颖昕, 杨雷, 张世昌. 矩形槽同轴布拉格结构的模式匹配分析方法及实验验证. 物理学报, 2013, 62(20): 208402. doi: 10.7498/aps.62.208402
    [9] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [10] 杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊. 射频电感耦合夹层等离子体中的模式转换. 物理学报, 2012, 61(19): 195206. doi: 10.7498/aps.61.195206
    [11] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [12] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [13] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [14] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [15] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [16] 丁振峰, 袁国玉, 高 巍, 孙景超. 柱面天线射频感性耦合等离子体放电模式特性的实验研究. 物理学报, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [17] 王晓强, 栗军帅, 陈 强, 祁 菁, 尹 旻, 贺德衍. 电感耦合等离子体CVD低温生长硅薄膜过程中的铝诱导晶化. 物理学报, 2005, 54(1): 269-273. doi: 10.7498/aps.54.269
    [18] 郑俊娟, 孙 刚. 周期地嵌入电介质球壳的金属表层的表面等离子激元及其与电介质腔体模式的耦合. 物理学报, 2005, 54(6): 2751-2757. doi: 10.7498/aps.54.2751
    [19] 张谷令, 王久丽, 杨武保, 范松华, 刘赤子, 杨思泽. 内表面栅极等离子体源离子注入TiN薄膜及其特性研究. 物理学报, 2003, 52(9): 2213-2218. doi: 10.7498/aps.52.2213
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  6846
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-08-24
  • 刊出日期:  2017-11-05

/

返回文章
返回