x

## 留言板

 引用本文:
 Citation:

## Mode-matching analytic method of a coaxial Bragg structure corrugated with rectangular ripples and its experimental verification

Lai Ying-Xin, Yang Lei, Zhang Shi-Chang
PDF
• #### 摘要

基于模式匹配法建立了矩形槽同轴布拉格结构的全波耦合分析模型, 推导出了不同模式反射率和传输率的计算式, 并采用公开报道的实验数据验证了该理论模型. 在此基础上就本文理论与其他相关的理论方法进行了比较, 发现以前的理论近似模型由于忽略了矩形槽中的消失模而使传输率的频率响应曲线发生偏差. 本文建立的理论方法有望为矩形槽同轴布拉格结构的特性研究和工程实践提供一种理论分析手段.

#### Abstract

Based on the mode-matching method, an analytical model with full-wave coupling is presented for the coaxial Bragg structures corrugated with rectangular ripples, where the expressions of the reflectivity and transmission rate for each involved mode are derived. The validity of the analytical model is examined in terms of a reported experiment, and good agreement between the theoretical results and the experimental measurements is demonstrated. Comparative study is carried out between the present model and the published theoretical results. It is found that the approximate treatment adopted by the previous model leads to notable deviation of the transmission response curve due to the neglect of the evanescent modes excited by rectangular ripples. The analytical method presented in this paper can be expected to provide a useful approach to the characteristic investigation and engineering practice of the coaxial Bragg structures with rectangular ripples.

#### 作者及机构信息

###### 1. 东莞理工学院电子工程学院, 东莞 523808; 2. 西南交通大学信息科学与技术学院, 成都 610031
• 基金项目: 国家自然科学基金(批准号: 60871023)、国家重点基础研究发展计划(批准号: 2013CB834305)、广东省自然科学基金(批准号: S2011010000300)和东莞市高等院校科研机构科技计划(批准号: 2011108102011)资助的课题.

#### Authors and contacts

###### 1. School of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China; 2. Institute of Photoelectronics, Southwest Jiaotong University, Chengdu 610031, China
• Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60871023), the National Basic Research Program of China (Grant No. 2013CB834305), the Natural Science Foundation of Guangdong Province, China (Grant No. S2011010000300), and the Foundation of Science and Technological Program for Dongguan Higher Education Institutions, China (Grant No. 2011108102011).

#### 参考文献

 [1] Lu L Y, Li F, Xu M, Wang T, Wu J Y, Zhou L J, Su Y K 2012 IEEE Photon. Tech. Lett. 24 1765 [2] Ginzburg N S, Peskov N Y, Sergeev A S, Zaslavsky V Y, Arzhannikov A V, Kalinin P V, Sinitsky S L, Thumm M 2012 J. Appl. Phys. 112 114504 [3] Wagner D, Kasparek W, Leuterer F, Monaco F, Munich M, Schutz H, Stange T, Stober J, Thumm M 2011 J. Infrared Millim. Terahz. Waves 32 1424 [4] Du C H, Liu P K, Xue Q Z 2010 Chin. Phys. B 19 048703 [5] Gao R M, Wu B, Zhang H, Zhu L D, Guo P, Chang S J, Wang Q 2009 Acta Phys. Sin. 58 1838 (in Chinese) [高润梅, 吴犇, 张会, 朱良栋, 郭澎,常胜江, 王倩 2009 物理学报 58 1838] [6] Huang M, Wu J, Cui H Y, Qian J Q, Ning Y Q 2012 Chin. Phys. B 21 104207 [7] Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221 [8] Thumm M, Kasparek W, Wagner D, Wien A 2013 IEEE Trans. Antenn. Propag. 61 2449 [9] Liu Y G, Che F L, Jia Z A, Fu H W, Wang H L, Shao M 2013 Acta Phys. Sin. 62 104218 (in Chinese) [刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏 2013 物理学报 62 104218] [10] Denisov G G, Lukovnikov D A, Samsonov S V 1995 Int. J. Infrared Millim. Waves 16 745 [11] Ginzburg N S, Kaminsky A A, Kaminsky A K, Peskov N Y, Sedykh S N, Sergeev A P, Sergeev A S 2000 Phys. Rev. Lett. 84 3574 [12] Chong C K, McDermott D B, Razeghi M M, Luhmann N C, Pretterebner J, Wagner D, Thumm M, Caplan M, Kulke B 1992 IEEE Trans. Plasma Sci. 20 393 [13] Konoplev I V, McGrane P, Cross A W, Ronald K, Phelps A D R 2005 J. Appl. Phys. 97 073101 [14] Konoplev I V, McGrane P, Cross A W, Ronald K 2005 Appl. Phys. Lett. 87 121104 [15] Chen X H, Zhang S C, Lai Y X 2008 Int. J. Infrared Millim. Waves 29 552 [16] Ding X Y, Zhang S C 2009 J. Phys. D: Appl. Phys. 42 085104 [17] Lai Y X, Zhang S C 2007 Phys. Plasmas 14 113301 [18] Zhang Y, Zhang S C, Zhang H B, Xin Q, Kong Y Y, Chai B 2010 J. Infrared Millim. Terahz. Waves 31 1126 [19] Xin Q, Zhang S C, Zhang H B, Kong Y Y, Chai B, Zhang Y 2010 J. Infrared Millim. Terahz. Waves 31 1278 [20] Lan F, Yang Z Q, Shi Z J 2011 Acta Phys. Sin. 60 091101 (in Chinese) [兰峰, 杨梓强, 史宗君 2011 物理学报 60 091101] [21] Lai Y X, Tan Y M 2012 J. Electron. Info. Tech. 34 2023 (in Chinese) [赖颖昕, 谭永明 2012 电子与信息学报 34 2023] [22] Arndt F, Bornermann J, Vahldieck R, Grauerholz D 1984 IEEE Trans. Microwave Theory Tech. MTT-32 1391 [23] Neilson J M, Latham P E, Caplan M, Lawson W 1989 IEEE Trans. Microwave Theory Tech. MTT-37 1165 [24] Liu Y H, Li H F, Li H, Wang E F, Xu Y, Wang H, Wang L 2006 Acta Phys. Sin. 55 1718 (in Chinese) [刘迎辉, 李宏福, 李浩, 王峨锋, 徐勇, 王晖, 王丽 2006 物理学报 55 1718] [25] Luo Y, Li H F, Xie Z L, Yu S, Deng X, Zhao Q, Xu Y 2004 Acta Phys. Sin. 53 229 (in Chinese) [罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐勇 2004 物理学报 53 229]

#### 施引文献

•  [1] Lu L Y, Li F, Xu M, Wang T, Wu J Y, Zhou L J, Su Y K 2012 IEEE Photon. Tech. Lett. 24 1765 [2] Ginzburg N S, Peskov N Y, Sergeev A S, Zaslavsky V Y, Arzhannikov A V, Kalinin P V, Sinitsky S L, Thumm M 2012 J. Appl. Phys. 112 114504 [3] Wagner D, Kasparek W, Leuterer F, Monaco F, Munich M, Schutz H, Stange T, Stober J, Thumm M 2011 J. Infrared Millim. Terahz. Waves 32 1424 [4] Du C H, Liu P K, Xue Q Z 2010 Chin. Phys. B 19 048703 [5] Gao R M, Wu B, Zhang H, Zhu L D, Guo P, Chang S J, Wang Q 2009 Acta Phys. Sin. 58 1838 (in Chinese) [高润梅, 吴犇, 张会, 朱良栋, 郭澎,常胜江, 王倩 2009 物理学报 58 1838] [6] Huang M, Wu J, Cui H Y, Qian J Q, Ning Y Q 2012 Chin. Phys. B 21 104207 [7] Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221 [8] Thumm M, Kasparek W, Wagner D, Wien A 2013 IEEE Trans. Antenn. Propag. 61 2449 [9] Liu Y G, Che F L, Jia Z A, Fu H W, Wang H L, Shao M 2013 Acta Phys. Sin. 62 104218 (in Chinese) [刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏 2013 物理学报 62 104218] [10] Denisov G G, Lukovnikov D A, Samsonov S V 1995 Int. J. Infrared Millim. Waves 16 745 [11] Ginzburg N S, Kaminsky A A, Kaminsky A K, Peskov N Y, Sedykh S N, Sergeev A P, Sergeev A S 2000 Phys. Rev. Lett. 84 3574 [12] Chong C K, McDermott D B, Razeghi M M, Luhmann N C, Pretterebner J, Wagner D, Thumm M, Caplan M, Kulke B 1992 IEEE Trans. Plasma Sci. 20 393 [13] Konoplev I V, McGrane P, Cross A W, Ronald K, Phelps A D R 2005 J. Appl. Phys. 97 073101 [14] Konoplev I V, McGrane P, Cross A W, Ronald K 2005 Appl. Phys. Lett. 87 121104 [15] Chen X H, Zhang S C, Lai Y X 2008 Int. J. Infrared Millim. Waves 29 552 [16] Ding X Y, Zhang S C 2009 J. Phys. D: Appl. Phys. 42 085104 [17] Lai Y X, Zhang S C 2007 Phys. Plasmas 14 113301 [18] Zhang Y, Zhang S C, Zhang H B, Xin Q, Kong Y Y, Chai B 2010 J. Infrared Millim. Terahz. Waves 31 1126 [19] Xin Q, Zhang S C, Zhang H B, Kong Y Y, Chai B, Zhang Y 2010 J. Infrared Millim. Terahz. Waves 31 1278 [20] Lan F, Yang Z Q, Shi Z J 2011 Acta Phys. Sin. 60 091101 (in Chinese) [兰峰, 杨梓强, 史宗君 2011 物理学报 60 091101] [21] Lai Y X, Tan Y M 2012 J. Electron. Info. Tech. 34 2023 (in Chinese) [赖颖昕, 谭永明 2012 电子与信息学报 34 2023] [22] Arndt F, Bornermann J, Vahldieck R, Grauerholz D 1984 IEEE Trans. Microwave Theory Tech. MTT-32 1391 [23] Neilson J M, Latham P E, Caplan M, Lawson W 1989 IEEE Trans. Microwave Theory Tech. MTT-37 1165 [24] Liu Y H, Li H F, Li H, Wang E F, Xu Y, Wang H, Wang L 2006 Acta Phys. Sin. 55 1718 (in Chinese) [刘迎辉, 李宏福, 李浩, 王峨锋, 徐勇, 王晖, 王丽 2006 物理学报 55 1718] [25] Luo Y, Li H F, Xie Z L, Yu S, Deng X, Zhao Q, Xu Y 2004 Acta Phys. Sin. 53 229 (in Chinese) [罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐勇 2004 物理学报 53 229]
•  [1] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案. 物理学报, 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067 [2] 李森清, 张肖, 林机. 熔融耦合器中耦合模式与新型孤子结构. 物理学报, 2022, 71(23): 234207. doi: 10.7498/aps.71.20221273 [3] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194 [4] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018 [5] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062 [6] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应. 物理学报, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302 [7] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208 [8] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509 [9] 刘青伦, 王自成, 刘濮鲲, 董芳. 基于场匹配法的双排矩形栅慢波结构高频特性研究. 物理学报, 2012, 61(24): 244102. doi: 10.7498/aps.61.244102 [10] 唐光明, 苗俊刚, 董金明, 胡晓晴. 一种性能稳定的新Y形单元厚屏频率选择表面. 物理学报, 2012, 61(11): 118401. doi: 10.7498/aps.61.118401 [11] 兰峰, 杨梓强, 史宗君. 带有锥度结构的同轴开槽布拉格反射器研究. 物理学报, 2011, 60(9): 091101. doi: 10.7498/aps.60.091101 [12] 曾祥楷, 饶云江. Bragg光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597 [13] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625 [14] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731 [15] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412 [16] 蔡鑫伦, 黄德修, 张新亮. 基于全矢量模式匹配法的三维弯曲波导本征模式计算. 物理学报, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268 [17] 岳立娟, 沈 柯. 布拉格声光双稳系统时空混沌的单向耦合同步. 物理学报, 2005, 54(12): 5671-5676. doi: 10.7498/aps.54.5671 [18] 谢鸿全, 刘濮鲲, 李承跃, 鄢　扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析. 物理学报, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114 [19] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455 [20] 潘少华. 染料激光器模式耦合半经典理论. 物理学报, 1981, 30(8): 1067-1076. doi: 10.7498/aps.30.1067
• 文章访问数:  4367
• PDF下载量:  514
• 被引次数: 0
##### 出版历程
• 收稿日期:  2013-05-31
• 修回日期:  2013-07-16
• 刊出日期:  2013-10-05

/