-
二维六方氮化硼(hexagonal boron nitride, hBN)材料在产生光学稳定的超亮量子单光子光源领域有着潜在应用, 有望用于量子计算和信息处理平台, 已成为研究热点. 而光学非对称传输设备是集成量子计算芯片中的关键器件之一. 本文从理论上提出了一种基于hBN材料光子晶体异质结构的纳米光子学非对称光传输器件. 运用平面波展开法研究了光子晶体的能带结构与等频特性, 从理论上分析了hBN异质结构中可见光波非对称传输的可行性. 同时, 采用时域有限差分方法研究了可见光波段异质结构的晶格常数和半径对透射光谱的影响. 研究结果显示, 该结构实现了在610—684 nm波长范围内TE偏振光的非对称传输, 在652 nm波长处正向透射率达到0.65, 反向透射率为0.006, 非对称传输透射对比度高达0.98. 本文提出的结构模型为基于hBN的新型纳米光子器件设计提供了新的可能性, 可用于不同功能光学器件的集成设计.Two-dimensional (2D) hexagonal boron nitride (hBN) possesses many unique properties such as high mechanical strength and excellent chemical and thermal stability. The 2D hBN exhibits a wide bandgap in the UV region and optically-stable ultra-bright quantum emitters that make hBN a promising nanophotonic platform for quantum computing and information processing, especially in the visible wavelength range. Therefore, it is greatly important to build up different nanophotonic devices with different functionalities based on this material platform to achieve the integrated photonic chips. Among the devices, the integratable optical asymmetric transmission devices are important elements for functional quantum computing chips. Since hBN is a dielectric material, photonic crystal (PhC) structure is the most suitable in principle and allows on-chip integration with other photonic devices. In this study, we theoretically design an asymmetric transmission device based on 2D hBN PhC heterostructures in the visible wavelength range for the first time. Due to the relatively low refractive index of 2D hBN material (n < 2.4), we design a free-standing hBN PhC heterostructure to maximize the light trapping in the structure and minimize the propagation loss. The asymmetric transmission device is composed of two square-lattice 2D PhC structures, namely PhC 1 and PhC 2. We use the plane wave expansion method (PWM) to calculate the iso-frequency contours (EFCs) of the PhC structures to study the light propagation inside of the PhCs, which will propagate along the gradient of direction of the EFCs. We design the PhC structure in the way that the incident light beams from different angles can be self-collimated along the Г-X direction of the PhC 2 and coupled out. On the other hand, the backward incident light is blocked by the bandgaps of PhC 2. In this way, asymmetric optical transmission is achieved with high forward transmittance and contrast ratio. In addition, we further finely tune the structural parameters, including the lattice constant and column radius of the PhCs to optimize the performance by using the finite difference time domain (FDTD) method. The resulting 2D hBN PhC heterostructure achieves an asymmetric transmission in a wavelength range of 610–684 nm with a peak forward transmittance of 0.65 at a wavelength of 652 nm. Meanwhile, the backward transmittance is controlled to be 0.04. As a result, the contrast ratio can reach up to 0.95. The working bandwidth of the hBN PhC is 74 nm (TF > 0.5). In addition, the designed asymmetric transmission device has a small size of 11 μm × 11 μm, thus it is suitable for on-chip integration. Our results open up possibilities for designing new nanophotonic devices based on 2D hBN material for quantum computing and information processing. The design principle can be generally used to design other photonic devices based on 2D hBN material.
-
Keywords:
- asymmetric transmission /
- two-dimensional hexagonal boron nitride /
- photonic crystal /
- heterostructure
[1] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar
[3] Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar
[4] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar
[5] Nersisyan H H, Lee T H, Lee K H, An Y S, Lee J S, Lee J H 2015 RSC Adv. 5 8579Google Scholar
[6] Glavin N R, Jespersen M L, Check M H, Hu J, Hilton A M, Fisher T S, Voevodin A A 2014 Thin Solid Films 572 245Google Scholar
[7] Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889Google Scholar
[8] Doan T C, Majety S, Grenadier S, Li J, Lin J Y, Jiang H X 2015 Nucl. Instrum. Methods 783 121Google Scholar
[9] Barboza A P M, Chacham H, Oliveira C K, Fernandes T F D, Ferreira E H M, Archanjo B S, Batista R J C, De Oliveira A B, Neves B R A 2012 Nano Lett. 12 2313Google Scholar
[10] Barcelos I D, Cadore A R, Campos L C, Malachias A, Watanabe K, Taniguchi T, Maia F C, Freitas R, Deneke C 2015 Nanoscale 7 11620Google Scholar
[11] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar
[12] Nebel C E 2009 Nat. Photonics 3 564Google Scholar
[13] Shotan Z, Jayakumar H, Considine C R, Mackoit M, Fedder H, Wrachtrup J R, Alkauskas A, Doherty M W, Menon V M, Meriles C A 2016 ACS Photonics 3 2490Google Scholar
[14] Chejanovsky N, Rezai M, Paolucci F, Kim Y, Rendler T, Rouabeh W, Fávaro d O F, Herlinger P, Denisenko A, Yang S 2016 Nano Lett. 16 7037Google Scholar
[15] Bourrellier R, Meuret S, Tararan A, Stã©Phan O, Kociak M, Tizei L H, Zobelli A 2016 Nano Lett. 16 4317Google Scholar
[16] Kim S, Fröch J E, Christian J, Straw M, Bishop J, Totonjian D, Watanabe K, Taniguchi T, Toth M, Aharonovich I 2018 Nat. Commun. 9 2623Google Scholar
[17] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D 2013 Nat. Photonics 7 579Google Scholar
[18] Qiang X, Zhou X, Wang J, Wilkes C M, Loke T, O’Gara S, Kling L, Marshall G D, Santagati R, Ralph T C 2018 Nat. Photonics 12 534Google Scholar
[19] Fei H M, Wu J J, Yang Y B, Liu X, Chen Z H 2015 Photonics Nanostruct. 17 15Google Scholar
[20] Yu G X, Fu J J, Du W W, Lu Y H, Luo M 2019 Chin. Phys. B 28 024101Google Scholar
[21] Liu D Y, Yao L F, Zhai X M, Li M H, Dong J F 2014 Appl. Phys. A 116 9Google Scholar
[22] Feng S, Wang Y Q 2013 Opt. Express 21 220Google Scholar
[23] Kim M, Yao K, Yoon G, Kim I, Liu Y, Rho J 2017 Adv. Opt. Mater. 5 1700600Google Scholar
[24] Wang C, Zhou C, Li Z Y 2011 Opt. Express 19 26948Google Scholar
[25] Fei H M, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Cao B Z 2019 Superlattices Microstruct. 132 106155Google Scholar
[26] 费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿 2017 物理学报 66 204103Google Scholar
Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z, Liang J Q 2017 Acta Phys. Sin. 66 204103Google Scholar
[27] Li J, Ye H, Yu Z, Liu Y 2017 Opt. Express 25 19129Google Scholar
[28] Fei H M, Zhang Q, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Guo R, Han X T 2020 Appl. Opt. 59 4416Google Scholar
[29] Kim J, Lee S Y, Park H, Lee K, Lee B 2015 Opt. Express 23 9004Google Scholar
[30] Gao H, Zheng Z, Dong J, Feng J, Zhou J 2015 Opt. Commun. 355 137Google Scholar
[31] Wang C, Zhong X L, Li Z Y 2012 Sci. Rep. 2 674Google Scholar
[32] Kim S, Toth M, Aharonovich I 2018 Beilstein J. Nanotechnol. 9 102Google Scholar
[33] Plihal M, Maradudin A A 1991 Phys. Rev. B 44 8565Google Scholar
[34] Feng S, Wang Y Q 2013 Opt. Mater. 36 546Google Scholar
[35] Chan C T, Yu Q L, Ho K M 1995 Phys. Rev. B 51 16635Google Scholar
-
图 3 (a) PhC 1中TE偏振模式下第二条能带对应的等频图; (b) PhC 2中TE偏振模式下第五条能带对应的等频图(红色和蓝色虚线表示670和630 nm对应的等频线). TE偏振的正向入射光 (c) 和反向入射光 (d) 在670 nm波长处的电场强度分布图; 正向入射光(e)和反向入射光(f)在630 nm波长处的电场强度分布图
Fig. 3. (a) The EFCs of the second band in PhC 1 for TE polarization; (b) the EFCs of the fifth band in PhC 2 for TE polarization (The red and blue dotted lines represent the EFCs corresponding to 670 and 630 nm). The electric field intensity distribution diagrams of forward incident light (c) and backward incident light (d) of TE polarization at the wavelength of 670 nm. The electric field intensity distribution diagrams of forward incident light (e) and backward incident light (f) of TE polarization at the wavelength of 630 nm
图 4 PhC 1取不同晶格常数 (a) 与不同柱子半径(b) 的透射率; 异质结构中PhC 2取不同的晶格常数(c) 与柱子半径(d) 的透射率
Fig. 4. The transmittance spectra of PhC 1 on the different lattice constants of PhC 1 (a) and the different radii of the columns (b). The transmittance spectra of the heterostructure on the different lattice constants of PhC 2 (c) and the different radii of the columns (d).
-
[1] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar
[3] Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar
[4] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar
[5] Nersisyan H H, Lee T H, Lee K H, An Y S, Lee J S, Lee J H 2015 RSC Adv. 5 8579Google Scholar
[6] Glavin N R, Jespersen M L, Check M H, Hu J, Hilton A M, Fisher T S, Voevodin A A 2014 Thin Solid Films 572 245Google Scholar
[7] Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889Google Scholar
[8] Doan T C, Majety S, Grenadier S, Li J, Lin J Y, Jiang H X 2015 Nucl. Instrum. Methods 783 121Google Scholar
[9] Barboza A P M, Chacham H, Oliveira C K, Fernandes T F D, Ferreira E H M, Archanjo B S, Batista R J C, De Oliveira A B, Neves B R A 2012 Nano Lett. 12 2313Google Scholar
[10] Barcelos I D, Cadore A R, Campos L C, Malachias A, Watanabe K, Taniguchi T, Maia F C, Freitas R, Deneke C 2015 Nanoscale 7 11620Google Scholar
[11] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar
[12] Nebel C E 2009 Nat. Photonics 3 564Google Scholar
[13] Shotan Z, Jayakumar H, Considine C R, Mackoit M, Fedder H, Wrachtrup J R, Alkauskas A, Doherty M W, Menon V M, Meriles C A 2016 ACS Photonics 3 2490Google Scholar
[14] Chejanovsky N, Rezai M, Paolucci F, Kim Y, Rendler T, Rouabeh W, Fávaro d O F, Herlinger P, Denisenko A, Yang S 2016 Nano Lett. 16 7037Google Scholar
[15] Bourrellier R, Meuret S, Tararan A, Stã©Phan O, Kociak M, Tizei L H, Zobelli A 2016 Nano Lett. 16 4317Google Scholar
[16] Kim S, Fröch J E, Christian J, Straw M, Bishop J, Totonjian D, Watanabe K, Taniguchi T, Toth M, Aharonovich I 2018 Nat. Commun. 9 2623Google Scholar
[17] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D 2013 Nat. Photonics 7 579Google Scholar
[18] Qiang X, Zhou X, Wang J, Wilkes C M, Loke T, O’Gara S, Kling L, Marshall G D, Santagati R, Ralph T C 2018 Nat. Photonics 12 534Google Scholar
[19] Fei H M, Wu J J, Yang Y B, Liu X, Chen Z H 2015 Photonics Nanostruct. 17 15Google Scholar
[20] Yu G X, Fu J J, Du W W, Lu Y H, Luo M 2019 Chin. Phys. B 28 024101Google Scholar
[21] Liu D Y, Yao L F, Zhai X M, Li M H, Dong J F 2014 Appl. Phys. A 116 9Google Scholar
[22] Feng S, Wang Y Q 2013 Opt. Express 21 220Google Scholar
[23] Kim M, Yao K, Yoon G, Kim I, Liu Y, Rho J 2017 Adv. Opt. Mater. 5 1700600Google Scholar
[24] Wang C, Zhou C, Li Z Y 2011 Opt. Express 19 26948Google Scholar
[25] Fei H M, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Cao B Z 2019 Superlattices Microstruct. 132 106155Google Scholar
[26] 费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿 2017 物理学报 66 204103Google Scholar
Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z, Liang J Q 2017 Acta Phys. Sin. 66 204103Google Scholar
[27] Li J, Ye H, Yu Z, Liu Y 2017 Opt. Express 25 19129Google Scholar
[28] Fei H M, Zhang Q, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Guo R, Han X T 2020 Appl. Opt. 59 4416Google Scholar
[29] Kim J, Lee S Y, Park H, Lee K, Lee B 2015 Opt. Express 23 9004Google Scholar
[30] Gao H, Zheng Z, Dong J, Feng J, Zhou J 2015 Opt. Commun. 355 137Google Scholar
[31] Wang C, Zhong X L, Li Z Y 2012 Sci. Rep. 2 674Google Scholar
[32] Kim S, Toth M, Aharonovich I 2018 Beilstein J. Nanotechnol. 9 102Google Scholar
[33] Plihal M, Maradudin A A 1991 Phys. Rev. B 44 8565Google Scholar
[34] Feng S, Wang Y Q 2013 Opt. Mater. 36 546Google Scholar
[35] Chan C T, Yu Q L, Ho K M 1995 Phys. Rev. B 51 16635Google Scholar
计量
- 文章访问数: 7164
- PDF下载量: 127
- 被引次数: 0