搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓/石墨烯/金刚石异质界面热输运调控研究

刘东静 王鹏博 胡志亮 陆佳琪 肖煜 黄家强

引用本文:
Citation:

氮化镓/石墨烯/金刚石异质界面热输运调控研究

刘东静, 王鹏博, 胡志亮, 陆佳琪, 肖煜, 黄家强

Study on the Thermal Transport Regulation at GaN/Graphene/Diamond Heterojunction Interfaces

Liu Dong-Jing, Wang Peng-Bo, Hu Zhi-Liang, Lu Jia-Qi, Xiao Yu, Huang JiaQiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为研究高功率氮化镓器件散热性能,构建氮化镓/石墨烯/金刚石异质结构,采用分子动力学方法调控异质界面热输运特性,并从声子输运角度揭示异质界面传热机理与调控机制。研究发现Ga-C接触方式的界面热导是N-C结构的3倍,且氮化镓/石墨烯/金刚石异质结构不具有热整流特性。N和B掺杂下界面热导先增大后减小,但Si掺杂下界面热导单调增大。两种Si掺杂势函数对应的界面热导差异不大,但双势函数下的石墨烯结构更稳定。线性掺杂和圆形掺杂两种掺杂形貌对界面热导影响不大,但线性掺杂下石墨烯声子谱变化更具规律性。氢化会严重阻碍界面传热,但三种氢化结构下的界面热导均随氢化率增加而增大。研究结果可为氮化镓器件热管理提供理论支持,同时对突破大功率电子器件散热瓶颈具有指导价值。
    To study the heat dissipation performance of high-power gallium nitride devices, the thermal transport characteristics of GaN/graphene/diamond heterostructures were investigated at heterogeneous interfaces through molecular dynamics simulations. The research focuses on phonon transport mechanisms and regulatory strategies at interfacial regions. The key findings are summarized as follows:
    Comparative analysis of two contact configurations reveals that the Ga-C structure exhibits an interfacial thermal conductance three times higher than that of the N-C structure, attributed to its larger phonon cutoff frequency and enhanced interfacial phonon coupling as evidenced by phonon spectral analysis. The intrinsic heterostructure demonstrates no thermal rectification characteristics without interface engineering. Hydrogenation effects analysis demonstrates that while hydrogenation generally impedes interfacial heat transfer, thermal conductance paradoxically increases with hydrogenation ratio. This counterintuitive phenomenon arises from hydrogen-induced lattice disorder/hybridization scattering causing phonon localization (particularly severe in GaN-side hydrogenation), while simultaneously creating new phonon coupling channels. Through elemental doping investigations, nitrogen and boron doping induce initial increases followed by reductions in interfacial thermal conductance, while silicon doping produces monotonic enhancement. Overlap factor analysis indicates that N and B doping first strengthen then weaken interfacial phonon coupling, whereas Si doping significantly improves coupling through synergistic effects of strong interfacial interactions and phonon focusing. Comparative evaluations of two Si doping potential functions show negligible differences in thermal conductance outcomes. Doping morphology studies reveal minimal impact on interfacial thermal conductance, though linear doping configurations induce systematic variations in graphene phonon spectra.
    These findings provide critical theoretical insights for thermal management optimization of GaN-based devices and offer fundamental guidance for overcoming thermal dissipation bottlenecks in high-power electronic systems.
  • [1]

    Rafin S M S H, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 MICROMACHINES-BASEL 14 11

    [2]

    Liu D J, Hu Z L, Zhou F, Wang P B, Wang Z D, Li T, 2024 Acta Phys. Sin. 73 150202 (in Chinese) [刘东静,胡志亮,周福,王鹏博,王振东,李涛 2024 物理学报 73 150202]

    [3]

    Zha J W, Wang F, Wan B Q, 2025 Prog. Mater Sci. 148 101362

    [4]

    Giri A, Walton S G, Tomko J, Bhatt N, Johnson M J, Boris D R, Lu G, Caldwell J D, Prezhdo O V, Hopkins P E 2023 ACS Nano 17 14253

    [5]

    Liu D, Wang S, Zhu J, Li H, Zhu H 2022 Phys. Lett. A 426 127895

    [6]

    Lee W, Kihm K D, Kim H G, Lee W, Cheon S, Yeom S, Lim G, Pyun K R, Ko S H, Shin S 2018 CARBON 138 98

    [7]

    Chegel R 2023 Diamond Relat. Mater. 137 110154

    [8]

    Song J, Xu Z, He X 2020 Int. J. Heat Mass Transfer 157 119954

    [9]

    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 NANOSCALE 11 4067

    [10]

    Yang H, Gao S, Pan Y, Yang P 2024 Int. Commun. Heat Mass Transfer 155 107521

    [11]

    Dong S, Yang B, Xin Q, Lan X, Wang X, Xin G 2022 Phys. Chem. Chem. Phys. 24 12837

    [12]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742

    [13]

    Chen G F, Bao W L, Chen J, Wang Z L 2022 CARBON 190 170

    [14]

    Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616

    [15]

    Farzadian O, Yousefi F, Shafiee M, Khoeini F, Spitas C, Kostas K V 2024 J. Mol. Graph. Model. 129 108763

    [16]

    Yang B, Li D, Qi L, Li T, Yang P 2019 Phys. Lett. A 383 1306

    [17]

    Oi N, Okubo S, Tsuyuzaki I, Hiraiwa A, Kawarada H 2024 IEEE Electron Device Lett. 45 1554

    [18]

    Wang Y, Wang S, Zhang Y, Cheng Z, Yang D, Wang Y, Wang T, Cheng L, Wu Y, Hao Y 2024 NANOSCALE 16 15170

    [19]

    Yang B, Wang J, Yang Z, Xin Z, Zhang N, Zheng H, Wu X 2023 Mater. Today Phys. 30 100948

    [20]

    Zhu H T, Li G R, Fang C, Zhou Y P, Fang Z J, Zhao K 2023 ACTA Petrol. Mineral. 42 673(in Chinese) [朱洪涛,黎广荣,方诚,周义朋,方志杰,赵凯 2023岩石矿物学杂志 42 673]

    [21]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989

    [22]

    Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050

    [23]

    Liang Q, Wei Y 2014 Phys. B: Condens. Matter 437 36

    [24]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211

    [25]

    Yang B 2021 Ph. D. Dissertation (ZhenJiang: Jiangsu University) (in Chinese) [杨兵 2021 博士学位论文 (镇江:江苏大学)]

    [26]

    Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901 (in Chinese) [刘东静,周福,陈帅阳,胡志亮 2023 物理学报 72 157901]

    [27]

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302 (in Chinese) [刘东静, 王韶铭, 杨平 2021 物理学报 70 187302]

    [28]

    Shao C K, Tang Y, Chen G, Yu S D, Yan C M, Ding X R, Yuan W, Zhang S W 2024 J. Mech. Eng. 60 271 (in Chinese) [邵常焜, 汤勇, 陈恭, 余树东, 颜才满, 丁鑫锐, 袁伟, 张仕伟 2024 机械工程学报 60 271]

    [29]

    Ding H B, He J R, Ding L M, He T 2024 DeCarbon 4 100048

    [30]

    Zhao H, Yang X, Wang C, Lu R, Zhang T, Chen H, Zheng X 2023 Mater. Today Phys. 30 100941

    [31]

    Yang Y, Ma J, Pei Q X, Yang J, Zhang Y 2023 Int. J. Heat Mass Transfer 216 124558

    [32]

    Das P, Paul P, Hassan M, Morshed A M, Paul T C 2025 Comput. Mater. Sci 246 113359

    [33]

    Kochaev A, Maslov M, Katin K, Efimov V, Efimova I 2022 Mater. Today Nano 20 100247

    [34]

    Tong Z, Yang Y L, Xu J, Liu W, Chen L Acta Phys. Sin. 2023 72 068201(in Chinese) [佟赞, 杨银利, 徐晶,刘伟,陈亮 2023 物理学报 72 068201]

    [35]

    Xiang X, Liu L, Ba J W 2023 J. Atom. Mol. Phys. 40 032002(in Chinese) [向鑫,刘浪,把静文 2023 原子与分子物理学报 40 032002]

    [36]

    Yang B, Li D, Yang H, Wang J, Yang P 2020 Int. Commun. Heat Mass Transfer 117 104735

    [37]

    Goharshadi E K, Mahdizadeh S J 2015 J MOL GRAPH MODEL 62 74

    [38]

    Weng Y K, Yousefzadi Nobakht A, Shin S, Kihm K D, Aaron D S 2021 Int. J. Heat Mass Transfer 169 120979

    [39]

    Majeti V K, Roy A, Gupta K K, Dey S 2020 IOP Conference Series: Materials Science and Engineering Coimbatore, 2020 012188

    [40]

    Habibur Rahman M, Mitra S, Motalab M, Bose P 2020 RSC Adv. 10 31318

    [41]

    Rajasekaran G, Kumar R, Parashar A 2016 Mater. Res. Express 3 035011

    [42]

    Yang B, Li D, Yang H, Wang J, Yang P 2020 Int. Commun. Heat Mass Transfer 117 104735

    [43]

    Zhang X, Zhang J, Yang M 2020 Solid State Commun. 309 113845

  • [1] 张彦如, 高翔, 宁宏阳, 张福建, 宋云云, 张忠强, 刘珍. 微纳流固界面主动气膜减阻机理分子动力学研究. 物理学报, doi: 10.7498/aps.74.20250289
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, doi: 10.7498/aps.73.20240515
    [3] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240026
    [4] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, doi: 10.7498/aps.73.20240323
    [5] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20240021
    [6] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导. 物理学报, doi: 10.7498/aps.72.20221981
    [7] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究. 物理学报, doi: 10.7498/aps.72.20230791
    [8] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210613
    [9] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [10] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20180958
    [11] 高潭华, 郑福昌, 王晓春. 半氢化石墨烯与单层氮化硼复合体系的电子结构和磁性的调控. 物理学报, doi: 10.7498/aps.67.20180538
    [12] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, doi: 10.7498/aps.64.126201
    [13] 唐文来, 项楠, 张鑫杰, 黄笛, 倪中华. 非对称弯曲微流道中粒子惯性聚焦动态过程及流速调控机理研究. 物理学报, doi: 10.7498/aps.64.184703
    [14] 高潭华. 表面氢化双层硅烯的结构和电子性质. 物理学报, doi: 10.7498/aps.64.076801
    [15] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, doi: 10.7498/aps.63.153402
    [16] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086401
    [17] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, doi: 10.7498/aps.63.016801
    [18] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, doi: 10.7498/aps.62.176103
    [19] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, doi: 10.7498/aps.62.056803
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.50.244
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-09

/

返回文章
返回