搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维各向同性谐振子的几何动量分布

刘全慧 张梦男 肖世发 寻大毛

引用本文:
Citation:

三维各向同性谐振子的几何动量分布

刘全慧, 张梦男, 肖世发, 寻大毛

Geometric momentum distribution for three-dimensional isotropic hormonic oscillator

Liu Quan-Hui, Zhang Meng-Nan, Xiao Shi-Fa, Xun Da-Mao
PDF
HTML
导出引用
  • 尽管几何动量最初的引入是为了描述超面上的运动粒子的动量,却不需要限制在真实的曲面上.如果一个曲线坐标系包含了超面族和超面上的法向矢量作为一个坐标轴的单位矢量,几何动量可以定义在超面族上,并参与构造对易力学量完全集.在三维各向同性谐振子中,采用球坐标描述,存在等效球面,并在球面族上建立对易力学量完全集.因此,三维各向同性谐振子同时具有动量和几何动量分布.这两个动量的差,可以定义为径向动量,从而使得径向动量可以测量.那么,通过几何动量,可以显示出狄拉克引进的径向动量的物理意义,而不是一直认为的那样完全不具有观测意义.
    The geometric momentum was originally introduced for defining the momentum of particle constrained on a hypersurface, but it is in fact not necessarily defined on a curved surface only. If a coordinate system contains a family of hypersurfaces and a normal vector on hypersurface used as a unit vector, the geometric momentum can be defined on the family of hypersurfaces and can be used to determine a complete set of commuting observables. For instance, the spherical polar coordinate system is such a kind of coordinate, in which for a given value of radial position, the spherical surface is a hypersurface. It is well-known that any vector in the space can be decomposed into components along each axis of the spherical polar coordinates, but the geometric momentum has a different decomposition, for it requires a projection of the momentum on the hypersurface, and then needs to decompose the projection into the Cartesian coordinates of the original space where the whole spherical coordinates are defined. Explicitly, with a relation-iħ▽= p Σ + p n where-iħ▽ can be usual momentum operator in Cartesian coordinates, and p Σ is the momentum component on the hypersurface which turns out to be the geometric momentum, and p n is the momentum component along the radial direction, we have a nontrivial definition of radial momentum as p n ≡-iħ▽- p Σ. Once-iħ▽ and p Σ are measurable, p n is then indirectly measurable. The three-dimensional isotropic harmonic oscillator can be described in both the Cartesian and the spherical polar coordinates, whose quantum states thus can be examined in terms of both momentum and geometric momentum distributions. The distributions of the radial momentum are explicitly given for some states. The radial momentum operator that was introduced by Dirac has clear physical significance, in contrast to widely spreading belief that it is not measurable due to its non-self-adjoint.
    [1]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [2]

    Spittel R, Uebel P, Bartelt H, Schmidt M A 2015 Opt. Express 23 12174

    [3]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [4]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods Mod. Phys. 10 1220031

    [5]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [6]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [7]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [8]

    Wang Y L, Du L, Xu C T, Liu X J, Zong H S 2014 Phys. Rev. A 90 042117

    [9]

    Wang Y L, Jiang H, Zong H S 2017 Phys. Rev. A 96 022116

    [10]

    Lian D K, Hu L D, Liu Q H 2018 Ann. Phys. 530 1700415

    [11]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [12]

    Dirac P A M 1967 The Principles of Quantum Mechanics (4th edition) (Oxford: Oxford University Press) p114, p153

    [13]

    Robinson P D, Hirschfelder J O 1963 J. Math. Phys. 4 338

    [14]

    Arthurs A M 1968 Proc. Natl. Acad. Sci. USA 60 1105

    [15]

    Domingos J M, Caldeira M H 1984 Found. Phys. 14 147

    [16]

    Liu Q H, Xiao S F 2015 Int. J. Geom. Methods Mod. Phys. 12 1550028

    [17]

    Xiao S F, Liu Q H 2018 Mod. Phys. Lett. A 33 1850125

    [18]

    Liu Q H 2014 Phys. Lett. A 378 785

    [19]

    Yang C N 1977 Ann. NY Acad. Sci. 294 86

  • [1]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [2]

    Spittel R, Uebel P, Bartelt H, Schmidt M A 2015 Opt. Express 23 12174

    [3]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [4]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods Mod. Phys. 10 1220031

    [5]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [6]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [7]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [8]

    Wang Y L, Du L, Xu C T, Liu X J, Zong H S 2014 Phys. Rev. A 90 042117

    [9]

    Wang Y L, Jiang H, Zong H S 2017 Phys. Rev. A 96 022116

    [10]

    Lian D K, Hu L D, Liu Q H 2018 Ann. Phys. 530 1700415

    [11]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [12]

    Dirac P A M 1967 The Principles of Quantum Mechanics (4th edition) (Oxford: Oxford University Press) p114, p153

    [13]

    Robinson P D, Hirschfelder J O 1963 J. Math. Phys. 4 338

    [14]

    Arthurs A M 1968 Proc. Natl. Acad. Sci. USA 60 1105

    [15]

    Domingos J M, Caldeira M H 1984 Found. Phys. 14 147

    [16]

    Liu Q H, Xiao S F 2015 Int. J. Geom. Methods Mod. Phys. 12 1550028

    [17]

    Xiao S F, Liu Q H 2018 Mod. Phys. Lett. A 33 1850125

    [18]

    Liu Q H 2014 Phys. Lett. A 378 785

    [19]

    Yang C N 1977 Ann. NY Acad. Sci. 294 86

  • [1] 贾谊成, 张福荣, 张景风, 孔令军, 张向东. 三维空间轨道角动量全息. 物理学报, 2024, 73(9): 094202. doi: 10.7498/aps.73.20231822
    [2] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [3] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] 邢健崇, 张文静, 杨涛. 玻色-爱因斯坦凝聚中的非正则涡旋态及其动力学. 物理学报, 2023, 72(10): 100306. doi: 10.7498/aps.72.20222289
    [5] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [6] 罗慧玲, 凌晓辉, 周新星, 罗海陆. 光束正入射至界面时的自旋-轨道相互作用及其增强. 物理学报, 2020, 69(3): 034202. doi: 10.7498/aps.69.20191218
    [7] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子. 物理学报, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [8] 寻大毛, 欧阳涛, 谈荣日, 刘慧宣. 悬链曲面上的点粒子动力学及扩展空间约束系统量子化. 物理学报, 2015, 64(24): 240305. doi: 10.7498/aps.64.240305
    [9] 李兴华, 杨亚天. 球坐标中三维各向同性谐振子的类经典态. 物理学报, 2015, 64(8): 080301. doi: 10.7498/aps.64.080301
    [10] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [11] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [12] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [13] 吴 楚. 多项式角动量代数的代数表示及实现. 物理学报, 2006, 55(6): 2676-2681. doi: 10.7498/aps.55.2676
    [14] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [15] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 物理学报, 2002, 51(3): 501-505. doi: 10.7498/aps.51.501
    [16] 李文博. 用赝角动量方法求解同调谐振子. 物理学报, 2001, 50(12): 2356-2362. doi: 10.7498/aps.50.2356
    [17] 高文斌, A.D.RUDERT, J.MARTIN, H.ZACHARIAS, J.B.HALPERN. C2H221分子转动角动量定向分布(Orientation)及其碰撞弛豫和转移. 物理学报, 1999, 48(5): 862-875. doi: 10.7498/aps.48.862
    [18] 鲍坚仁, 周鲁卫. 为什么轨道角动量不能是?/2?. 物理学报, 1997, 46(5): 833-840. doi: 10.7498/aps.46.833
    [19] 陈健华, 程香爱. 准旋-角动量标量算符本征值与费密子j-j耦合态的完全分类. 物理学报, 1995, 44(10): 1529-1533. doi: 10.7498/aps.44.1529
    [20] 刘连寿. π-N散射的复角动量. 物理学报, 1965, 21(6): 1123-1131. doi: 10.7498/aps.21.1123
计量
  • 文章访问数:  7729
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-11-06

/

返回文章
返回